摘要
针对布谷鸟搜索算法局部搜索能力不强的缺点,提出一种基于随机局部搜索的改进布谷鸟搜索算法用于求解工程结构优化问题。引入惯性权重以平衡算法的勘探和开采能力;利用随机局部搜索方法对当前最优解进行局部搜索,以加快算法的收敛速度。两个工程结构优化问题的实验结果表明了该算法的可行性和有效性。
This paper proposed an effective modified cuckoo search(MCS) algorithm based on stochastic local search method to solve engineering structural design optimization problems. The algorithm used the inertia weight to balance the exploration and ex- ploitation ability of algorithm. And it introduced the stochastic local search technique to improve the convergence speed of CS al- gorithm. The proposed algorithm was applied to solve two engineering structural design optimization problems. The result shows that MCS is of better or competitive performances when it compares with other existing optimization methods.
出处
《计算机应用研究》
CSCD
北大核心
2014年第3期679-683,共5页
Application Research of Computers
基金
国家自然科学基金资助项目(11162019
11047003)
广西自然科学基金资助项目(2013GXNSFBA019014)
玉林师范学院青年基金重点资助项目(2012YJZD11)
关键词
布谷鸟搜索算法
工程结构优化问题
随机局部搜索
佳点集方法
cuckoo search algorithm
engineering structural optimization
stochastic local search
good point set method