期刊文献+

求解工程结构优化问题的改进布谷鸟搜索算法 被引量:21

Modified cuckoo search algorithm for solving engineering structural optimization problem
下载PDF
导出
摘要 针对布谷鸟搜索算法局部搜索能力不强的缺点,提出一种基于随机局部搜索的改进布谷鸟搜索算法用于求解工程结构优化问题。引入惯性权重以平衡算法的勘探和开采能力;利用随机局部搜索方法对当前最优解进行局部搜索,以加快算法的收敛速度。两个工程结构优化问题的实验结果表明了该算法的可行性和有效性。 This paper proposed an effective modified cuckoo search(MCS) algorithm based on stochastic local search method to solve engineering structural design optimization problems. The algorithm used the inertia weight to balance the exploration and ex- ploitation ability of algorithm. And it introduced the stochastic local search technique to improve the convergence speed of CS al- gorithm. The proposed algorithm was applied to solve two engineering structural design optimization problems. The result shows that MCS is of better or competitive performances when it compares with other existing optimization methods.
作者 陈乐 龙文
出处 《计算机应用研究》 CSCD 北大核心 2014年第3期679-683,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(11162019 11047003) 广西自然科学基金资助项目(2013GXNSFBA019014) 玉林师范学院青年基金重点资助项目(2012YJZD11)
关键词 布谷鸟搜索算法 工程结构优化问题 随机局部搜索 佳点集方法 cuckoo search algorithm engineering structural optimization stochastic local search good point set method
  • 相关文献

参考文献19

  • 1NASIR M, DAS S, MALTY D, et al. A dynamic neighborhood lear-ning based particle swarm optimizer for global numerical optimization [ J]. Information Sciences, 2012,209(9) : 16- 36.
  • 2MICHALEWICZ Z, SCHOENAUER M. Evolutionary algorithm for constraint parameter optimization problems [ J ]. Evolutionary Com- putation, 1996,4 ( 1 ) : 1 - 32.
  • 3SADOLLAH A, BAHREININEJAD A, ESKANDAR H. Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems [ J]. Applied Soft Computing, 2013,13(5) :2592-2612.
  • 4YANG Xin-she, DEB S. Cuckoo search via L~vy flights[C]// Proc of World Congress on Nature and Biologically Inspired Computing. [ S. 1] : IEEE Press, 2009:210- 214.
  • 5BURNWAL S, DEB S. Scheduling optimization of flexible manufac- turing system using cuckoo search-based approach[ J ]. International Journal of Advanced Manufacturing Technology, 2013,64 (5- 8) :951-959.
  • 6YANG Xin-she, DEB S. Multi-objective cuckoo search for design op- timization[ J]. Computers & Operations Research, 2013,40 (6) :1616- 1624.
  • 7HUAPT R, HAUPT S. Practical genetic algorithm [ M ]. New York : Wiley, 2004.
  • 8龙文,梁昔明,徐松金,陈富.聚类佳点集交叉的约束优化混合进化算法[J].计算机研究与发展,2012,49(8):1753-1761. 被引量:18
  • 9FAN S K S, CHIU Y Y. A decreasing inertia weight particle swarm optimizer[J]. Engineering Optimization, 2007,39(2) :203-228.
  • 10LUUS R, JAAKOLA T H I. Optimization by direct search and sys- tematic reduction of the size of the search region [ J]. AIGhE Jour- nal, 1973, 19(4):760-766.

二级参考文献16

  • 1董红斌,黄厚宽,何军,侯薇.一种求解约束优化问题的演化规划算法[J].计算机研究与发展,2006,43(5):841-850. 被引量:7
  • 2Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization [-J. IEEE Trans on Evolutionary Computation, 2000, 4(3): 284-294.
  • 3Deb K. An efficient constraint handling method for genetic algorithm EJ]. Computation Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4) : 311-338.
  • 4Wang Y P, Dang C Y. An evolutionary algorithm for global optimization based on level-set evolution and Latin squares [J]. IEEE Trans on Evolutionary Computation, 2007, 11 (5) : 579-595.
  • 5Farmani R, Wright J A. Self-adaptive fitness formulation for constrained optimization J]. IEEE Trans on Evolutionary Computation, 2003, 7(5): 445-455.
  • 6Cai Z X, Wang Y. A multiobjective optimization-based evolutionary algorithm for constrained optimization [J]. |EEE Trans on Evolu-tionary Computation, 2006, 10 (6): 658-675.
  • 7Wang Y, Cai Z X, Zhou Y R, et al. An adaptive trade-off model for constrained evolutionary optimization EJ3. IEEE Trans on Evolutionary Computation, 2008, 12(1) : 80-92.
  • 8Venkatraman S, Yen G G. A generic framework for constrained optimization using genetic algorithms EJ]. IEEE Trans on Evolutionary Computation, 2005, 9(4) : 424-435.
  • 9Mezura-Montes E. Coello C C A. A simple multimemberedevolution strategy to solve constrained optimization problems [-J. IEEE Trans on Evolutionary Computation, 2005, 9(1) . 1-17.
  • 10Liang J J, Runarrson T P, Mezura-Montes E, et al. Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization [OL] E2010-10-21. http://www3, ntu. edu, sg/home/EPNSugan/.

共引文献17

同被引文献186

引证文献21

二级引证文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部