期刊文献+

基于贝叶斯信念网络的话题识别模型 被引量:1

Topic detection model based on Bayesian belief network
下载PDF
导出
摘要 针对贝叶斯信念网络应用于话题识别进行了研究,提出了新的话题识别模型。模型的拓扑结构包括新报道、报道术语、事件术语、话题四层节点,用弧标明索引关系。在贝叶斯概率和条件独立性假设的基础上,模型运用条件概率计算新报道和已有话题簇的相似度,从而实现话题识别。考虑到核心报道、核心事件的重要性,对不同层次的权重计算进行了调整。实验采用DET曲线评测法对模型性能进行测试,实验结果显示,调整后的权重计算可在一定程度上提高新模型的性能,与向量空间模型相比,在相同阈值下新模型的漏报率与误报率有所降低。 According to the research of Bayesian belief network was applied to topic detection, this paper proposed a new topic detection model. The topology of the new model included four level nodes : new story, story term, event term and topic, arcs indicated the indexing relationships. To achieve the task of topic detection, the new model applied conditional probability based on Bayesian probability and conditional independence assumption to compute the similarity between new story and topic clus- ters. Considering the importance of seminal stories and seminal events,it adjusted weight computations in different levels,and evaluated the new model and the vector space model by DET curves. Experimental results show that adjusted weight computa- tions will improve 'the performance of the new model, and at the same threshold, the new model has lower miss probability and false alarm probability compared to the vector space model.
出处 《计算机应用研究》 CSCD 北大核心 2014年第3期792-795,共4页 Application Research of Computers
基金 保定市科学技术研究与发展指导计划项目(13ZR058) 中国博士后科学基金资助项目(20070420700) 河北省自然科学基金资助项目(F2011201146)
关键词 话题识别 贝叶斯信念网络 报道 Ltopic detection Bayesian belie~ network story
  • 相关文献

参考文献17

  • 1陈学昌,韩佳珍,魏桂英.话题识别与跟踪技术发展研究[J].中国管理信息化,2011,14(9):56-59. 被引量:5
  • 2The National Institute of Standards and Technology(NIST). The 2005 topic detection and tracking (TDT2005) task definition and evalua- tion plan [ EB/OL]. (2005). ftp://'jaguar, ncsl. hist. gov//tdt/ tdt2005/. Eval. Plan. vllps.
  • 3洪宇,仓玉,姚建民,周国栋,朱巧明.话题跟踪中静态和动态话题模型的核捕捉衰减[J].软件学报,2012,23(5):1100-1119. 被引量:19
  • 4YANG Yi-ming, PIERCE T, CARBONELL J. A study of retrospective and on-line event detection [ C ]//Proc of the 21 st Annual Internation- al ACM SIGIR Conference on Research and Development in Informa- tion Retrieval. New York : ACM Press, 1998 : 28- 36.
  • 5骆卫华,于满泉,许洪波,王斌,程学旗.基于多策略优化的分治多层聚类算法的话题发现研究[J].中文信息学报,2006,20(1):29-36. 被引量:38
  • 6DAI Xiang-ying, CHEN Qing-cai, WANG Xiao-long, et al. Online top- ic detection and tracking of financial news based on hierarchical clus- tering[ C]//Proc of International Conference on Machine Learning and Cybernetics. 2010:3341-3346.
  • 7马彬,洪宇,陆剑江,姚建民,朱巧明.基于线索树双层聚类的微博话题检测[J].中文信息学报,2012,26(6):121-128. 被引量:16
  • 8ALSUMAIT L,BARBAR~. D, DOMENICONI C, et al. On-line LDA: adaptive topic models for mining text streams with spplications to topic detection and tracking[ C ]//Proc of the 8th IEEE International Con- ference on Data Mining. 2008:3-12.
  • 9HU Zhen-yu, LIN Shi-min, LU Yu-chang. The asymptotic normality of posterior in Bayesian learning[ J]. Journal of Guangxi Normal Uni- versitwNatural Science Editinn 2004.
  • 10De CRISTO M A P,CALADO P P,De LOURDES M S,et al. Bayesian belief networks for IR [ J ]. international Journal of Approximate Reasoning ,2003,34 (2-3) :.163-179.

二级参考文献50

共引文献72

同被引文献10

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部