期刊文献+

目标相似性度量的鬼影抑制方法 被引量:5

Method of ghost suppression based on similarity measure
下载PDF
导出
摘要 针对背景差分法中的鬼影扰乱运动目标检测与跟踪问题,提出目标相似性度量的鬼影抑制方法。首先分析间隔帧中目标的直方图分布和像素变化率,依此判断目标相似度并检测鬼影;然后提出面向鬼影对象的背景模型更新方法,快速校正鬼影背景,抑制鬼影再出现。实验结果表明,该方法克服了自适应背景方法的检测灵敏度低和运动属性方法消耗高的缺点,能够快速准确地抑制鬼影。 Aiming at the problem that ghost disrupt the accuracy of moving target detection and tracking, this paper proposed ghost suppression method based on object similarity measure. First it analyzed object similarity between interval frame by histo- gram contrast analysis and rate of change pixels to detect ghost, and then adjusted ghost background mode rapidly in the object sample space, restrained ghosts appear again. Experiments show that the proposed method overcome shortcomings of the tradi- tional ghost detection, low sensitivity and high consumption, quickly and accurately detect the ghost targets, and ultimately a- chieve the Dumose of inhibitin~ --host.
出处 《计算机应用研究》 CSCD 北大核心 2014年第3期926-928,932,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(40901197 41161061) 云南省自然科学基金资助项目(2008D032M)
关键词 运动目标检测 鬼影 相似性度量 直方图对比分析 背景模型更新 moving target detection ghost similarity measure histogram contrast analysis background model update
  • 相关文献

参考文献14

  • 1李璟,刘怀愚,洪留荣.适用于遮挡车辆检测的子块带权模板匹配方法[J].计算机应用研究,2012,29(7):2751-2753. 被引量:4
  • 2M<4~IUGH J, KONRAD J, SALIGRAMA V, et +ft. Foreground-adair- rive background subtr~lction [ J ]. IEEE Signal Processing Letter, 2009, 16(5): 390-393.
  • 3HE Yu-i;eng, LI Jia-tian, WANG llua, et M. Adaptive, w~lfich, shad- ox~ detection algorithm in highway[ C ]//Pmc of IEEE International Symposium on Compulalional Intelligence and I)~'sign. 2012: 240- 243.
  • 4张明,孟丽丽,刘丽红,齐妙.基于分块和改进粒子滤波的运动目标检测方法[J].计算机科学,2012,39(11):261-263. 被引量:2
  • 5彭丽荣,何育枫,刘文军.基于最优特征选择的车辆跟踪方法[J].计算机工程,2012,38(19):195-198. 被引量:2
  • 6CUCCHIARA R, GRANA C, PICCARDI M, et .I. Detecting mo- ving objects, ghosts, anti slladows in video streams [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (10) : 1337- 1342.
  • 7YANG Tao, PAN Quart, 1,1 S Z, el a/. Multiph, h~,,.c, based hack- gn~und maintenance in complex environment[ C]//Proc of the 3rd In- ternational C~mferen~'c ~,n Image and Graphics. 2004 : 112- 1 t5.
  • 8STAUFFER C, GRIMSON W. Learning patterns of activity using re- ',d-time tracking [ J]. IEEE Yrans on Pattern Recognition and Machine intelligence, 2000, 22 ( 8 ) : 747- 75.
  • 9LEE D S. Improved adaptive mixture learning for robust video hack- ground modeling [ C ]//Proc of IAPR Workshop on Machine Vision for Applications. 2002 : 443-446.
  • 10WANG ~ Z. Integrated region-based image retrieval [M]. Boston: Kluwer Academic Publishers, 2001.

二级参考文献33

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 3Isard M, Blake A. Condensation-conditional Density Propagation for Visual Tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5-28.
  • 4Birchfield S. Elliptical Head Tracking Using Intensity Gradients and Color Histograms[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Santa Barbara, USA: IEEE Computer Society, 1998.
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-based Object Tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 6Stern H, Efros B. Adaptive Color Space Switching for Face Tracking in Multi-color Lighting Environment[C]//Proc. of IEEE International Conference on Automatic Face and Gesture Recognition. Washington D. C., USA: IEEE Press, 2002.
  • 7Collins R T, Liu Yanxi. On-line Selection of Discriminative Tracking Features[C]//Proc. of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE Press, 2003.
  • 8Comaniciu D, Ramesh V, Meer P. Real-time Tracking of Non-rigid Objects Using Mean Shift[C]//Proc. of IEEE International Conference on Computer Vision and Pattern Recognition. [S. l.]: IEEE Computer Society, 2000.
  • 9Doretto G, Chiuso A, Wu Ying-nian, et al. Dynamic textures[J]. International Journal of Computer Vision, 2003,51 (2) : 91-109.
  • 10Jain R, Nagel H H. On the analysis of accumulative difference pictures from image sequence of real world seenes [J]. IEEETransactions on Pattern Analysis and Machine InteIligence, 1979,1(2) :206-214.

共引文献3

同被引文献29

  • 1陈亮,陈晓竹,范振涛.基于Vibe的鬼影抑制算法[J].中国计量学院学报,2013,24(4):425-429. 被引量:21
  • 2王伟嘉,刘辉,沙莉,刘鑫,姜华.滞留与偷窃物体实时检测与分类算法[J].计算机应用,2007,27(10):2591-2594. 被引量:9
  • 3Avidan S.Support vector tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(8):1064-1072.
  • 4Learnedmiller E G,Sevillalara L.Distribution fields for tracking[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition,2012:1910-1917.
  • 5Oron S,Barhillel A,Levi D,et al.Locally orderless tracking[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition,2012:1940-1947.
  • 6Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,1999:246-252.
  • 7Tian Y L,Lu M,Hampspur A.Robust and Efficient Foreground Analysis for Real-time Video Surveillance[C]//Proceedings of the 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition.CVPR 2005,2005:1182-1187.
  • 8Li X,Zhang C,Zhang D.Abandoned objects detection using double illumination invariant foreground masks[C]//20thinternational Conference on Pattern Recognition,2010:241-250.
  • 9余孟泽,刘正熙,骆健,杨丹.基于块背景建模的运动目标检测[J].四川大学学报(自然科学版),2011,48(3):566-570. 被引量:6
  • 10金标,胡文龙.基于边缘相似性的背景差鬼影判别方法[J].计算机工程,2011,37(11):1-3. 被引量:3

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部