期刊文献+

一种视频数据驱动的水体表面模型生成方法 被引量:1

A video-data-driven method to generate water surface models
下载PDF
导出
摘要 针对视频数据噪声及计算误差造成重建流体高度场时域跳变的问题,提出一种视频数据驱动的流体表面模型生成方法。首先,在折射的流体表面重建算法基础上,利用水下场景视频数据生成初始流体表面高度场;其次,为了提高模型的时间连贯性,用数据驱动方式获取浅水波模拟关键参数的最优值;最后改进了浅水波模拟的计算求解过程,并将其作为物理约束来修正初始模型。基于真实数据的实验结果表明,该方法能够有效平滑流体模型高度场的跳变,使水体表面重建结果更加准确和连贯。 In order to relieve the jump effects of the height fields caused by video noises and computing errors, this paper pro- posed a video-data-driven method to generate models of fluid surfaces. First, it used shape from refraction method to recon- struct the initial water surface, and set the initial height fields with the reconstruction results. Then, in order to improve the time coherence of the reconstruction sequences, it chose the optimized parameter of shallow water simulation with a data-driven solution. After that, it improved the computational process of the shallow water simulation and regarded it as the physical con- straint to refine the initial models. It tested the proposed method on the real data sets, and the experimental results show the effectiveness of proposed method. The simulated fluid surfaces in videos sequences appeal" more accurate in spatial domain and much visually satisfied in temporal domain.
出处 《计算机应用研究》 CSCD 北大核心 2014年第3期942-945,948,共5页 Application Research of Computers
基金 国家"863"高技术研究发展计划资助项目(2012AA011803)
关键词 流体表面重建 高度场跳变 浅水波方程模拟 数据驱动 fluid surface reconstruction jump effects shallow water simulation data-driven
  • 相关文献

参考文献19

  • 1WANG Hua-min, LIAO Miao, ZHANG Qing, et el. Physically guided liquid surfa~'e modeling from videos [ C ]//Proe of ACM SIG- GRAPH. New York:ACM Press, 2009.
  • 2GALLEGO G, YEZZI A, FEDELE F, e/ el. A variational wave ac- quisition stereo system h)r the 3-11) reconstruction of oceanic sea states [ C]//Proe of the 30th International Cont~renee on Offshore Mecha- nics and Arctic Engineering. 2011.
  • 3WOJTAN C,MLILI.ER M, BROCHU T. Liquid simulation with mesh- based surface tracking[ C l//Proc of ACM SIGGRAI:'H. New York: ACM Press, 2011.
  • 4PICKUP D, 1.1 Chuan, COSKER D, et el. Reconstructing mass-con- served water surfaces using shape frnm shading and optical flow I C ]// Proe of the 10th Asian Conference on Compuler Vision. Berlin: Springer, 2011 : 189-201.
  • 5MURASE H. Surface shape reconstruction of a mmrigid transport ob- ject using refi'aetion and motion[ J ]. /EEE Trans on Pattern Analy- sis and Machine Intelligence, 1992, 14(10) : 1045-1052.
  • 6MORRIS N J, KUTULAKOS K N. Dynanlie refi'action stereo[ C]// Proe uf the lOth IEEE Intenmtional Conference on Computer Vision. [ S. 1. ] : IEEE Press, 2005 : 1573- 1580.
  • 7DING Yuan-yuan, LI Feng, Jl Yu, et el. I)ynamie fluid surface ac- quisition using a camera array[ C ]//Proe of IEEE International Con- ferenee on Computer Vision. [ S. 1. ] : IEEE Press, 2011 : 2478- 2485.
  • 8LI Feng, XU Li-wen, GUYENNE P, et el. Recovering fluid-type too- lions using Navier-Stokes potential flow [ C ]//Proe of IEEE Confe- rence on Computer Vision and Pattern Recognition. [ S. 1. ] : 1EEE Press, 2010:2448- 2455.
  • 9KASS M, MII,I.ER G. Rapid, stable fluid dynamics for computer graphics[ C]//Proe of ACM SIGGRAPH. 1990.
  • 10LAYTON A T, Van l)e PANNE M. A numerically efficient and slable algorithm for animating water waves [ J ]. The Visual Computer, 2002, 18(1): 41-53.

二级参考文献12

  • 1Murase H. Surface shape reconstruction of a nonrigid transparent object using refraction and motion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1992, 10(10): 1045-1052.
  • 2Morris N, Kutulakos K. Dynamic Refraction Stereo [C]//Tenth IEEE International Conference on Computer Vision, 2005. USA: IEEE Press, 2005, (2): 1573-1580.
  • 3Wang H, Liao M, Zhang Q. Physically Guided Liquid Surface Modeling from Videos [C]//ACM SIGGRAPH. USA: ACM, 2009: 1-11.
  • 4Efros A, Isler V, Shi J, Visontai M. Seeing through water [C]// Advances in Neural Information Processing Systems 17, USA: MIT Press, 2004: 393-400.
  • 5Donate A, Ribeiro E. Improved Reconstruction of Images Distorted by water waves [C]//Intemational Conference on Computer Vision Theory and Applications. USA: Springer, 2006: 228-235.
  • 6Donate A, Dahme G, Ribeiro E. Classification of Textures Distorted by Waterwaves [C]// Proceedings of the 18th International Conference on Pattern Recognition. USA: IEEE Press, 2006: 421-424.
  • 7Tian Y, Narasimhan S. Seeing through water: Image restoration using model-based tracking [C]// IEEE 12th International Conference on Computer Vision, USA: IEEE Press, 2009:2303-2310.
  • 8Oreifej O, Shu G, Pace T, Shah M. A Two-Stage Reconstruction Approach for Seeing Through Water [C]//24th IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE Press, 2011: 1153-1160.
  • 9Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D.Nonrigid registration using free-form deformations: application to breast MR images [J]. IEEE Transactions on Medical Imaging (S0278-0062), 1999, 18(8): 712-721.
  • 10Tian Y, Narasimhan S. The relationship between water depth and distortion [R]// Carnegie Mellon University Tech Report Robotic Institute, 2009. USA: Carnegie Mellon University, 2009.

共引文献6

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部