摘要
利用子流形的第二基本形式模长平方、Ricci曲率下确界和余维数的相关结论,给出了拟常曲率空间中紧致无边极小子流形Mn是全测地子流形的两个充分条件.
In this paper, using the square of the length of the second fundamental form of submanifolds, Ricci curvature infimum or codimension of quasi-constant curvature space, we give two sufficient conditions for the compact minimal submanifolds without boundary of quasi constant curvature spaces to be totally geodesic submanifolds.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第2期106-109,共4页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金(11101336)
关键词
拟常曲率
第二基本形式模长平方
全测地子流形
quasi-constant curvature
square of the length of the second fundamental form
totally geodesic submanifold