期刊文献+

有限规划水平自适应Markov决策过程的参数决策 被引量:1

Parameter Decision Making in Adaptive Markov Decision Process with Finite Planning Horizon
下载PDF
导出
摘要 针对现有Markov决策过程自适应决策方法仅研究无限规划水平自适应决策的不足,提出了一种有限规划水平Markov决策过程自适应决策算法.算法的基本思想是运用Bayes理论对未知系统进行“学习”,并且在每次决策时以最大概率保证实际决策为最优决策.最后用仿真结果表明了算法的有效性. An algorithm is proposed for adaptive MDP with finite planning horizon by reason of the fact that all current algorithms only consider adaptive MDP with infinite planning horizon. Bayes principle is applied to learn an unknown system; and for every decision the probability that the actual decision equals the optimal decision is maximized. Simulation results demonstrate the validity of the new algorithm.
出处 《应用科学学报》 CAS CSCD 2000年第4期335-339,共5页 Journal of Applied Sciences
基金 国家自然科学基金资助项目!(69874025)
关键词 MARKOV决策过程 自适应决策 BAYes原理 有限规划 参数决策 Markov decision process (MDP) adaptive decision making Bayes principle
  • 相关文献

参考文献1

  • 1言茂松,贝叶斯风险决策工程,1989年,31页

同被引文献9

  • 1[1]Wallace J H, Yar-Lin Kuol. An optimal structured policy for maintenance of partially observable aircraft engine components [J]. Naval Research Logistics,1998,45(4) :335~352.
  • 2[2]Nacy Gautreau, Soumaya Yacout, Rejean Hall. Simulation of partially observed Markov decision process and dynamic quality improvement[J]. Computers Ind Engng, 1997,32(4) :691 ~700.
  • 3[3]Hernandez Lerma O. Marcus S I. Adaptive control of Markov processes with incomplete state inform tion and unknown parameters [J]. Journal of Optimization Theory and Applications, 1987,52 (2): 227~241.
  • 4[4]Fernandez Gaucherand E. A methodology for the adaptive control of Markov chains under partial state information[A]. Proceedings of the 31st IEEE Decision and Control[C],1992.2 750~2 751.
  • 5[5]Fernandez Gaucherand E, Arapostathis A, Marcus S I. Analysis of an adaptive control scheme for a par tially observed controlled Markov chain[J]. IEEE Transactions on Automatic Control, 1993,38(6): 987~993.
  • 6[6]Monahan G E. A survey of partially observable Markov decision process: theory, models, and alogrithms[J]. Management Science,1982, 28 (1) : 1~16.
  • 7[7]Sondic E, Offensend F. The optimal control of partially observable Markov processes over a finite horizon [J]. Operation Research,1973,21(5):1 071~1 088.
  • 8[8]Melsa J L, Cohn D L. Decision and estimation theory[M]. New York: McGraw-Hill Book Company,1978.96~ 110.
  • 9[11]Doob J L. Stochastic Processes[M]. New York: John Wiley, 1953.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部