期刊文献+

考虑高阶系统动力学滞后的最优制导律研究 被引量:1

Design of optimal guidance law with higher-order dynamic lags
原文传递
导出
摘要 通常研究制导律性能时多将制导系统和飞控系统等理想化为单位1或是一阶滞后动力学环节,但这与实际模型并不是十分匹配,导致常用的制导律(如增强型比例导引律和一阶最优制导律等)直接应用于高阶制导系统模型仿真时会产生较大的脱靶量。为了克服这一缺点,提出一种考虑典型五阶制导系统动力学特性的最优制导律,并给出该种制导律基于最优控制理论的详细推导过程。通过仿真分析表明,该高阶制导律可以实现对目标直接撞击,制导精度较高,所需侧向转移速度较小。 Usually guidance and control system is regarded as a zero or single-lag dynamic model, which does not completely match with the actual model, causing the common guidance laws ( such as augmented proportional guidance law and single-lag optimal guidance law) to produce large miss distance when they are directly applied to the higher-order model. In order to overcome this shortcoming, a detailed deriva- tion process of five-order optimal guidance law with optimal control theory is proposed. Through simula- tion analysis, it is cleared that this guidance law can achieve the goal of direct hit, higher guidance accu- racy and smaller lateral divert velocity.
出处 《飞行力学》 CSCD 北大核心 2014年第1期38-42,47,共6页 Flight Dynamics
基金 航天支撑技术基金资助(2011-XGD-017) 西北工业大学基础研究基金资助(JC20110238)
关键词 高阶系统 脱靶量 最优制导律 最优控制理论 higher-order system miss distance optimal guidance law optimal control theory
  • 相关文献

参考文献10

二级参考文献44

  • 1刘小刚,宋凯.攻击机动目标的最优导引规律[J].空军工程大学学报(自然科学版),2002,3(1):18-21. 被引量:3
  • 2李小兵,刘兴堂.对付大机动目标的广义比例导引律研究[J].空军工程大学学报(自然科学版),2001,2(3):1-4. 被引量:12
  • 3韩京清,王伟.非线性跟踪─微分器[J].系统科学与数学,1994,14(2):177-183. 被引量:412
  • 4Cottrell R O. Optimal intercept guidance for short range tactical missiles[J]. AIAA Journal, 1971, 9 (7) :1414-1415.
  • 5Shneydor N A. Missile guidance and pursuit: Kinematics, dynamics and control [M]. Harwood Publishing, 1998, Chapter 8.
  • 6LEE G K F. Estimation of the Time-to-Go Parameter for Air-to-Air Missiles[ J ]. Journal of Guidance, Control, and Dynamics, 1985,8 (2) :262 -266.
  • 7LIN C F. Modern Navigation, Guidance, and Control Processing[ M ]. Prentice Hall, 1991.
  • 8Ki Back Kim. Receding Horizon Guidance Laws with the Current Target Information [ J]. IEEE Transactions on Decision and Control,2001,8 (3) : 1 523 -1 528.
  • 9S M Brainin, R B Mcghee. Optimal Biased Proportional Navigation [J]. IEEE Trans AC, 1968,13:440 -442.
  • 10J L Speyer. An Adaptive Terminal Guidance Scheme Based on Exponential Cost Griterion with Application to Homing Missiles[ J]. IEEE Trans AC, 1976, 21:371 -375.

共引文献20

同被引文献9

  • 1钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2013.
  • 2Jeon I S,Lee J I,Tahk M J.Impact-time-control guidance law for anti-ship missiles[J].IEEE Trans.on Control Systems Technology,2006,14(2):260-266.
  • 3Jeon I S,Lee J I,Tahk M J.Homing guidance law for cooperative attack of multiple missiles[J].Journal of Guidance,Control,and Dynamics,2010,33(1):275-280.
  • 4Tahk M J,Ryoo C K,Cho H.Recursive time-to-go estimation for homing guidance missiles[J].IEEE Trans.on Aerospace and Electronic Systems,2002,38(1):13-24.
  • 5Lin L,Kirubarajan T,Bar-Shalom Y.Pursuer identification and time-to-go estimation using passive measurements from an evader[J].IEEE Trans.on Aerospace and Electronic Systems,2005,41(1):190-204.
  • 6Ryoo C K,Cho H,Tahk M J.Optimal guidance laws with terminal impact angle constraint[J].Journal of Guidance,Control,and Dynamics,2005,28(4):724-732.
  • 7郑艺裕.导弹协同作战制导与控制方法研究[D].北京:北京理工大学,2014.
  • 8张友安,张友根,彭军.一种导弹攻击时间协同导引律[J].海军航空工程学院学报,2009,24(1):34-38. 被引量:8
  • 9张功,李帆,赵建辉,张文朋.弹着时间可控的机动目标多弹协同制导律[J].指挥控制与仿真,2010,32(1):52-55. 被引量:16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部