期刊文献+

Mode characteristics of nano-width rectangle resonator

Mode characteristics of nano-width rectangle resonator
原文传递
导出
摘要 A new method based on Maxwell's equations,ABCD ray matrices,and total internal reflection is proposed to theoretically analyze the characteristics of eigenmodes confined in nano-width rectangle resonators.Using this method,mode wavelengths and indices of transverse and longitudinal modes are obtained.Another method based on the finite difference time domain technique and Pad′e approximation is used to numerically calculate resonant wavelengths,mode field distributions and quality factors.The results of two methods show that the resonant wavelengths obtained from both methods are very close,and the maximum relative error is less than 2%.The mode indices of transverse and longitudinal modes obtained agree well with mode field distribution patterns calculated by finite difference time domain techniques. A new method based on Maxwell's equations,ABCD ray matrices,and total internal reflection is proposed to theoretically analyze the characteristics of eigenmodes confined in nano-width rectangle resonators.Using this method,mode wavelengths and indices of transverse and longitudinal modes are obtained.Another method based on the finite difference time domain technique and Pad′e approximation is used to numerically calculate resonant wavelengths,mode field distributions and quality factors.The results of two methods show that the resonant wavelengths obtained from both methods are very close,and the maximum relative error is less than 2%.The mode indices of transverse and longitudinal modes obtained agree well with mode field distribution patterns calculated by finite difference time domain techniques.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第2期63-68,共6页 中国光学快报(英文版)
基金 supported by the Major Program of National Natural Science Foundation of China(No.60890200) the National Natural Science Foundation of China(No.10976017)
关键词 Partial discharges Refractive index Time domain analysis Partial discharges Refractive index Time domain analysis
  • 相关文献

参考文献24

  • 1Y. Panitchob, G. S. Murugan, M. Zerws, P. Horak, S. Bernesehi, S. Pelli, G. Nunzi Conti, and J. Wilkinson, Opt. Express 16, 11066 (2008).
  • 2G. T. Paloczi, Y. Huang, A. Yariv, and S. Mookherjea, Opt. Express 11, 2666 (2003).
  • 3X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Na- ture 421, 241 (2003).
  • 4M. A. Zimmler, T. Voss, C. Ronning, and F. Capasso, Appl. Phys. Lett. 94, 241120 (2009).
  • 5Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, Appl. Phys. Lett. 94, 101108 (2009).
  • 6C. Yin, J. Gu, M. Li, Y. Song, Chin. Opt. Lett. 11, 082302 (2013).
  • 7F. Xu, L. Lu, W. L?, B. Yu, Chin. Opt. Lett. 11, 082802 (2013).
  • 8G. Feng, C. Yang, and S. Zhou, Nano Lett. 13, 272 (2012).
  • 9D. Rafizadeh, J. Zhang, S. Hagness, A. Taflove. K. Stair, S. Ho, and R. Tiberio, Opt. Lett. 22, 1244 (1997).
  • 10B. E. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, IEEE Photon. Teehnol. Lett. 10, 549 (1998).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部