期刊文献+

基于C-W方程的近程导引制导与控制方法 被引量:2

Research on Control and Guide Methods of Short-Distance Guidance Based on C-W Equation
下载PDF
导出
摘要 根据轨道动力学建立的航天器自主交会绝对运动与相对运动动力学方程,设计了基于C-W方程的近程导引段双脉冲和多脉冲制导与控制方案。采用闭环多脉冲制导,以控制精度和燃料消耗为指标,对双脉冲、等时间间隔多脉冲和闭环多脉冲制导进行比较。仿真结果表明:闭环6脉冲制导可用于近程导引段,有一定的工程应用价值。 According to the dynamic model of the absolute and relative motion established for the spacecraft automatic rendezvous by the orbit dynamics of spacecraft, the control and guide methods of the double-pulse and multi-pulse which were based on the C-W equation in this paper. The control and guide methods of the closed loop multi-pulse were adopted and the control accuracy and fuel consumption were used as index. The schemes of double- pulse, multiply pulse with the constant time span and closed-loop multiply pulse were compared. The results showed that the closed-loop 6 pulse could be used for the short-distance guidance phase, which was valuable in engineering.
出处 《上海航天》 2014年第1期1-6,共6页 Aerospace Shanghai
关键词 航天器自主交会 轨道动力学 C—W方程 近程导引 制导与控制 Spacecraft automatic rendezvous Orbit dynamic C-W equation Short-distance guidance Controland guide
  • 相关文献

参考文献6

二级参考文献26

  • 1林来兴.空间交会动力学和安全模式[J].宇航学报,1993,14(1):1-6. 被引量:16
  • 2林来兴,王立新.空间交会对接的双脉冲最优控制[J].航天控制,1996,14(1):12-18. 被引量:14
  • 3肖业伦.航天器飞行动力学原理[M].北京:宇航出版社,1995..
  • 4Bryson A E, Ho Y-C. Applied Optimal Control [M]. New York: Hemisphere Publishing Corporation, 1975.
  • 5Hull D G. Conversion of Optimal Control Problems into Parameter Optimization Problems [J]. Journal of Guidance, Control and Dynamics,1997, 20(1): 57 - 60.
  • 6Zondervan K P, Wood L J, Caughey T K. Optimal Low-Thrust, Three-Bum Orbit Transfers With Large Plane Changes [J]. Journal of the Astronautical Sciences, 1984, 32(3): 407 - 427.
  • 7Enright P J, Conway B A. Optimal Finite-Thrust Spacecraft Trajectories Using Collocation and Nonlinear Programming [J]. Journal of Guidance, Control and Dynamics, 1991, 14(5): 981 - 985.
  • 8Herman A L, Conway B A. Direct Optimization Using Collocation Based on High-Order Gauss-Lobatto Quadrature Rules [J]. Journal of Guidance, Control and Dynamics, 1996, 19(3): 592 - 599.
  • 9Fiaccio A V, McCormick C P. Nonlinear Programming - Sequential Unconstrained Minimization Technique [M]. J Wiley, 1968.
  • 10Bate R R 吴鹤鸣等(译).航天动力学基础[M].北京:北京航空航天大学出版社,1990..

共引文献68

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部