摘要
研究可积函数在均衡点处的中位值,首先引入可补点、中位值和均衡点的概念,然后使用它们将Rimann引理推广,得出中位值的积分极限表达式,最后给出中位值的Fourier积分表达式。这个结果主要应用于计算函数的Fourier积分表达式在间断点处的值。
The median value at the equilibrium point of the integrable function is studied. At first, the concepts of the tillable point, the median value and equilibrium point are introduced, and then by using them to generalize Rimann lemma, the integral limit expression of median value is obtained. Finally, the Fourier integral expression of the median value is given This result is mainly used in calculating the value at the discontinuities of the Fourier integral expression of the function.
出处
《四川理工学院学报(自然科学版)》
CAS
2014年第1期88-91,共4页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)