摘要
协同过滤推荐算法通过研究用户的喜好,实现从海量数据资源中为用户推荐其感兴趣的内容,在电子商务中得到了广泛的应用。然而,当此类算法应用到社交网络时,传统的评价指标与相似度计算的重点发生了变化,从而出现推荐算法效率偏低,推荐准确度下降问题,导致社交网络中用户交友推荐满意度偏低。针对这一问题,引入用户相似度概念,定义社交网络中属性相似度,相似度构成与计算方法,提出一种改进的协同过滤推荐算法,并给出推荐质量与用户满意度评价方法。实验结果表明:改进算法能有效改善社交网络中的推荐准确性并提高推荐效率,全面提高用户满意度。
Collaborative filtering recommendation algorithms widely used in e-commerce, recommend interesting content for users from massive data resources by studying their preferences and interests. The focus of similarity and evaluation have been changed when applied to social networks, however, they cause low efficiency and accuracy of the recommen- dation algorithms. User similarity was introduced for redefining the attribute similarity and similarity composition as well as the method of similarity calculating, then a new collaborative filtering recommendation algorithm based on user attrib- utes was designed and some methods for user satisfaction and quality of recommendations were presented. The experi- mental result shows that the new algorithm can effectively improve the accuracy' quality and user satisfaction of recom- mendation system in social networks_
出处
《通信学报》
EI
CSCD
北大核心
2014年第2期16-24,共9页
Journal on Communications
基金
国家自然科学基金资助项目(61273232
61304184)
湖南大学"青年教师成长计划"基金资助项目(531107021115)
教育部新世纪优秀人才支持计划基金资助项目(NCET-13-0785)
教育部人文社会科学研究青年基金资助项目(10YJC630080)
湖南省自然科学基金资助项目(11JJ2033)
湖南省教育厅重点科研基金资助项目(11A062)~~
关键词
协同过滤
用户相似度
属性相似度
互动相似度
用户满意度
collaborative filtering
user similarity
attribute similarity
interactive similarity
user Satisfaction