期刊文献+

复杂生物过程的仿真分析 被引量:4

Simulation and Analysis of Complex Biological Processes
下载PDF
导出
摘要 随着系统生物学研究的不断深入,生物过程网络的规模逐步拓展,模型的复杂程度也越来越高,客观上需要不同的分析方法去应对。针对典型的酿酒酵母糖酵解途径和流行病免疫防治过程的动态模型,分别利用Matlab和开源计算工具CVODE进行常规的数值积分求解,其结果与文献报道吻合;以此作为参照,将生物过程的动态模型离散化后利用基于内点法的非线性规划解题器IPOPT进行数学规划求解,计算结果显示,Matlab、CVODE及IPOPT对不同类型、规模的动态模型有不同的适用性;通过调整模型的离散参数,IPOPT可得到与参照一致的仿真结果,这表明非线性规划可作为分析优化生物过程这类大规模复杂系统的方法。 With the development of research on Systems Biology and the biological process network scale gradually expanded, the model increasingly became more complex. Objectively, it required multiple analysis methods to deal with. Aimed at the dynamic model of glycolysis pathway of Saccharomyces cerevisiae and the epidemic control process, the model was solved by Matlab and CVODE using conventional numerical integration solution, and the results agreed with the reported data. After discretization the dynamic models were solved by IPOPT which was a famous nonlinear programming solver. The results were shown to be consistent with the control subject. By compercomparison, these three solvers had different applicability on different types of problems, and nonlinear programming could be used as a novel approach for the optimization of biological process.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第3期670-674,共5页 Journal of System Simulation
基金 国家863计划项目(2008AA042902) 国家自然科学基金(60874057)
关键词 系统生物学 代谢途径 糖酵解 计算机仿真 非线性规划 systems biology metabolic pathway glycolysis simulation nonlinear programming
  • 相关文献

参考文献1

二级参考文献9

  • 1WINSTON W L. Operations research: applications and algorithms [ M ]. Calif: Thomson, 2004.
  • 2BETTS J T. Practical methods for optimal control using nonlinear programming: advances in design and control [ M ]. Philadelphia: Society for Industrial and Applied Mathematics, 2001.
  • 3AGARWAL A, GROSSMANN I E. Automating mathematical program transformations, lecture notes in computer science [ R ]. Berlin : Springer, 2010 : 134-148.
  • 4ACHTERBERG T, BARAHONA F, BIEGLER L. The computational infrastructure for operations research project [ CP/OL]. (2010-06-22) [2010-12-28 ]. http://www. corn-or, org.
  • 5FOURER R, LOPES L, MARTIN K. LPFML: a W3C XML schema for linear and integer programming [ J l- Informs Journal on Computing, 2005, 17(2) : 139-158.
  • 6FOURER R, GASSMANN H I, MA J, et al. An XML- based schema for stochastic programs[ J]. Ann Oper Res, 2009, 166(1) : 313-337.
  • 7HOCK W, SCHITTKOWSKI K. Test examples for nonlinear programming codes [ J]. Journal of Optimization Theory and Applications, 1980, 30( 1 ) : 127-129.
  • 8GOULD N, ORBAN D, TOINT P. A constrained and unconstrained testing environment, revisited [ DB/OL ]. (2010-07-09) [2011-01-16]. http://www. cuter, rl. ac. nk.
  • 9HAHN J, EDGAR T F. An improved method for nonlinear model reduction using balancing of empirical gramians [ J ]. Computers and Chemical Engineering, 2002, 26 (8) : 1379-1397.

共引文献5

同被引文献26

  • 1崔咪芬,黄学真,乔旭,时钧.汽相分流催化精馏塔中苯氯化工艺过程——床层压降和分流比例的计算[J].南京理工大学学报,2005,29(6):700-704. 被引量:2
  • 2杨蕾,陈丽杰,白凤武.高浓度酒精连续发酵过程中振荡行为的模拟及填料弱化振荡的机理[J].化工学报,2007,58(3):715-721. 被引量:10
  • 3HEINZLE E, BIWER A P, COONEY C L. Development of sustainable bioprocesses: modeling and assessment [M]. Sus- sex: Wiley, 2007: 1-316.
  • 4CHASSAGNOLE C, NOISOMMIT-RIZZI N, SCHMID J W, et al. Dynamic modeling of the central carbon metabolism of Escherichia coli [J]. Biotecbnol Bioeng, 2002, 79(1 ) : 53- 73.
  • 5TOHSATOY, IKUTAK, SHIONOYA A, et al. Parameteroptimization and sensitivity analysis for large kinetic models using a real-coded genetic algorithm [J]. Gene, 2013, 518 (1) : 84-90.
  • 6KADIR T A, MANNAN A A, KIERZEK A M, et al. Mod eling and simulation of the main metabolism in Escherichia co- li and its several single gene knockout mutants with experi mental verification [J]. Microb Cell Fact, 2010, 9: 88.
  • 7DALEY DJ, GANI J. Epidemic modeling: an introduction [M]. New York: Cambridge University Press, 2001: 1-213.
  • 8GRENFELL B T, PYBUS O G, GOG J R, et al. Unifying the epidemiological and evolutionary dynamics of pathogens [J]. Science, 2004, 303(5656): 327-332.
  • 9MILLER J C. Epidemics on networks with large initial condi- tions or changing structure [J]. PLoS One, 2014, 9(7): e101421.
  • 10WAN X, LIU J, CHEUNG W K, et al. Inferring epidemic network topology from surveillance data [J]. PLoS One, 2014, 9(6): e100661.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部