期刊文献+

高斯白噪声扰动下的电力系统混沌振荡抑制 被引量:4

Control of Chaos in Power System Under Gaussian White Noise
下载PDF
导出
摘要 电力系统是一种典型的非线性系统,在周期扰动下可能发生混沌振荡,严重影响电力系统的安全运行,而高斯白噪声的存在使得系统产生混沌振荡的阈值降低,更容易出现混沌振荡;采用Melnikov方法计算出存在高斯白噪声时混沌振荡产生的范围;针对出现的混沌振荡,在延迟时间τ一定的前提下,采用梯度下降方法自适应调整反馈增益的扩展延时反馈控制方法来抑制混沌振荡;由于系统还存在周期扰动,采用了一种周期振荡控制器,该控制器根据系统中的周期扰动进行设计,形式简单,仿真实验表明了在时间t=20 s左右时,系统稳定在平衡点附近,说明该方法能够快速有效地抑制高斯白噪声扰动下产生的混沌振荡。 The power system is a typical non--linear system, the chaos oscillation may occur under periodic disturbance, which seriously affects the safe operation of power system, but the threshold for the onset of chaos is lower because of gaussian white noise, the chaos oscilla- tion is easier to arise. The Melnikov method is used to calculate the range of chaos oscillation under gaussian white noise. In view of the chaos oscillation, when the time delay r is determined, an adaptive gradient descent method is adopted to adjust the feedback gain o{ the extended time--delayed feedback control to restrain the chaos oscillation. After the control is applied, because the system still exists periodic disturb- ance, a periodic oscillation controller is used, the controller is designed according to the periodic disturbance, the form is simple, the simula- tion results prove that when the time is about 20s, the system is stable near the equilibrium point, and the method can restrain the chaos os- cillation generated by gaussian white noise quickly and efficiently.
出处 《计算机测量与控制》 北大核心 2014年第2期578-580,583,共4页 Computer Measurement &Control
关键词 电力系统 混沌抑制 高斯白噪声 扩展延时反馈 平衡点 power system controlling chaos Gaussian white noise extended time--delayed feedback control equilibrium point
  • 相关文献

参考文献9

二级参考文献37

  • 1张强,王宝华,杨成梧.电力系统倍周期分岔分析[J].电力自动化设备,2004,24(11):6-9. 被引量:8
  • 2陈举华,徐楠.电力系统小扰动稳定域应用研究[J].中国电机工程学报,2004,24(12):52-57. 被引量:18
  • 3宋运忠,赵光宙,齐冬莲.电力系统混沌振荡的自适应补偿控制[J].电力系统及其自动化学报,2006,18(4):5-8. 被引量:19
  • 4刘增荣.混沌的微扰判据[M].上海:上海科技教育出版社,1994..
  • 5H. P. Ren, D. Liu. Nonlinear feedback control of chaos in per- manent magnet synchronous motor [J]. IEEE Trans Circ Sys-I, 2005, 53 (1): 45-50,.
  • 6B. B. Sharma, I. N. Kar. Parametric convergence and control of chaotic system using adaptive feedback linearization[J]. Cha- os, Solitons and Fractals, 2009 (40): 1475 - 1483.
  • 7YU Y N. Electric power system dynamic[M]. New York:Academic Press, 1983.
  • 8MASCOLO S,GRASSI G. Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua's circuit [J]. Int J Bifurcation and Chaos, 1999,9(6) : 1425-1434.
  • 9Yu Yixin, Jia Hongjie, Wang Chengshan. Chaotic phenomena and signal stability region of electric power systems [J]. Science in china (Series E), 2001,44 (2):187-199.
  • 10Chacon R ,Palmero F ,Balibrea F. Taming chaos in a driven Josephson junction [J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001,11 (7) : 1897-1909.

共引文献46

同被引文献31

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部