期刊文献+

高速高精度体全息光学相关器 被引量:3

High-Speed and High-Accuracy Volume Holographic Optical Correlator
原文传递
导出
摘要 体全息光学相关器基于体光栅的布拉格选择性,在记录介质的共同体积中利用角度复用存储多幅图像。相关计算时,输入一幅图像可以并行输出所有的相关点,每个相关点的强度代表输入图像与对应库图像之间的内积值。分析了提高体全息光学相关器运算精度和速度的关键技术。总结了近年来采用散斑调制技术降低相关通道串扰,采用二维随机交错方法消除图案依赖行为,采用多样本并行估计方法提高并行运算精度,采用读写分离结构实观系统小型化集成等体全息光学相关器技术方面的研究进展。目前体全息光学相关器已经实现超过7500通道的并行运算能力,运算速度达到138GHz。系统在遥感图像匹配、指纹识别等领域的成功应用证明了其高速高精度运算能力。 The volume holographic correlator (VHC) can store multiple images in the common volume of the storage medium by angular multiplexing based on the Bragg selectivity of volume gratings. During the correlation, all the correlation results between the stored images and the input search argument can be simultaneously got. Each correlation result is represented by the intensity of the corresponding correlation spot. The key technologies and constraint factors of the practical utilization of the VHC are analyzed. The research progresses in suppressing the channel crosstalk by speckle modulation, eliminating the impact of pattern dependent behavior, improving the processing accuracy by multi-sample parallel estimation, and system integration of the read-only VHC are summarized. Parallel processing ability with more than 7500 channels and processing speed up to 138 GHz are achieved in the current portable VHC system. The successful applications in remote sensing image matching and biometric recognition have proved the high speed high accuracy abilities of the system.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第2期46-54,共9页 Chinese Journal of Lasers
基金 国家973计划(2009CB724007) 国家自然科学基金(61177001 61275013 60677037)
关键词 全息 体全息光学相关器 光计算 相关识别 并行运算 角度复用 holography volume holographic optical correlator optics in computing correlation patternrecognition parallel processing angular multiplexing
  • 相关文献

参考文献27

  • 1Vander Lugt A B. Signal detection by complex spatial filtering[J]. IEEE Trans Information Theory, 1964, 10(2): 139-145.
  • 2Miller P C, Royce M, Virgo P, et al.. Evaluation of an optical correlator automatic target recognition system for acquisition and tracking in densely cluttered natural scenes[J]. Opt Eng, 1999, 38(11): 1814-1825.
  • 3胡茂海.基于相关输出相似性度量的目标识别算法[J].中国激光,2012,39(4):185-188. 被引量:5
  • 4Holeman J M, Welch J D. Autonomous Space Navigation System Utilizing Holographic Recognition[P]. US Patant: US3636330, [1972-1-18].
  • 5Bond R L, Mazumder M K, Testerman M K, et al.. Automatic screening of biological specimens by optical correlation[J]. Science, 1973, 179(4073): 571-573.
  • 6Burr G W, Kobras S, Hanssen H, et al.. Content-addressable data storage by use of volume holograms[J]. Appl Opt, 1999, 38(32): 6779-6784.
  • 7李建华,曹良才,谭小地,何庆声,金国藩.基于LiNbO_3晶体的透射式共光轴体全息存储技术[J].光学学报,2012,32(4):76-82. 被引量:11
  • 8Demetri P, Fai M. Holographic memories[J]. Scientific American, 1995, 273(5): 70-76.
  • 9Pu A, Denkewalter R, Psaltis D. Real-time vehicle navigation using a holographic memory[J]. Opt Eng, 1997, 36(10): 2737-2746.
  • 10Coufal H J, Psaltis D, Sincerbox G T. Holographic Data Storage[M]. New York: Springer-Verlag, 2000.

二级参考文献26

  • 1谭小地,堀米秀嘉.同轴式光全息存储技术及其系统[J].光学学报,2006,26(6):827-830. 被引量:7
  • 2K. G. Beauchamp. Walsh Functions and Their Applications [M]. London: Academic Press, London, 1975.
  • 3J. W. Goodman, A. R. Dias, L. M. Woody. Fullyparallel high speed incoherent optical method for performing discrete Fourier transforms[J]. Opt. Lett., 1978, 2(1): 1-3.
  • 4Asit K. Datta, Sunit K. Sen, Anish Deb et al.. Realization of a two dimensional discrete Walsh transform in a microprocessorcontrolled optical architecture [J]. Opt. Eng. 1994, 33 (2): 535-540.
  • 5A. Vander Lugt. Signal detection by complex spatial filtering [J]. IEEE Trans. Inf. Theory IT-10, 1964, 10(2):139-145.
  • 6J. R. Leger, S. H. Lee. Coherent optical implementation of generalized two dimensional transforms [ C]. Real-time signal processing, Society of Photo-Optical Instrymentation Engineers, 1978: 210-218.
  • 7J. R. Leger, S. H. Lee. Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions[J]. Appl. Opt., 1982, 21(2): 274-287.
  • 8I. Glaser. Noncoherent parallel optical processor for discrete two-dimensional linear transformations [J]. Opt. Lett., 1980, 5(10): 449-451.
  • 9I. Glaser. Lenslet array processors [J]. Appl. Opt., 1982, 21(7): 1271-1280.
  • 10I. Glaser. Compact lenslet-array-based holographic correlator/ convolver[J]. Opt. Lett. , 1995, 20:1565-1567.

共引文献13

同被引文献40

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部