期刊文献+

离轴数字全息波前重建算法讨论 被引量:18

Discussion of Wavefront Reconstruction Algorithm of Off-Axis Digital Holography
原文传递
导出
摘要 在离轴数字全息的应用研究中,将数字全息图视为单位振幅平面波照射下的光波场,利用1次快速傅里叶变换(FFT)计算菲涅耳衍射积分是最流行的物光波前重建方法(简称1-FFT法)。然而,用球面波为重建波,利用像平面滤波技术及角谱衍射理论,存在需要4次FFT的另一种波前重建方法(简称FIMG4FFT法)。基于快速傅里叶变换理论对这两种方法进行研究。结果表明,尽管FIMG4FFT重建方法需要进行4次FFT计算,却能用较少的计算资源高效率地重建同等质量的物光场。为便于实际应用,详细给出FIMG4FFT方法在彩色数字全息图像重建及物体微形变检测中的应用实例。 In the study of off-axis digital holography, digital hologram may be considered as a light wave field which is illuminated by the unit amplitude plane wave. The Fresnel diffraction integral can be calculated by only one fast Fourier transform (FFT). It is the most popular method of wavefront reconstruction (called 1-FFT). However, applying the spherical wave as the reconstruction wave, there is another method of wavefront reconstruction using the angular spectral diffraction theory and image plane filtering. This method requires four fast Fourier transforms (called FIMG4FFT). Two methods are researched based on the fast Fourier transform theory. The result demonstrates that the FIMG4FFT method needs four FFTs, but it can use less computation resource to reconstruct the equivalent quality object wave field. Finally, the application examples of the FIMG4FFT method are shown in detail in the reconstruction of color digital holograms and micro deformation detection.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第2期73-81,共9页 Chinese Journal of Lasers
基金 国家自然科学基金(60977007)
关键词 全息 彩色数字全息 波前重建 计算数字全息检测 holography color digital holography wave front reconstruction digital holography detection
  • 相关文献

参考文献23

  • 1J W Goodman, R W Lawrence. Digital image formation from electronically detected holograms[J]. Appl Phys Lett, 1967, 11(3): 77-79.
  • 2T Huang. Digital holography[C]. Proc IEEE, 1971, 59(9): 1335-1346.
  • 3S Schedin, G Pedrini, H J Tiziani, et al.. Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography[J]. Appl Opt, 1999, 38(34): 7056-7062.
  • 4J M Desse, F Albe, J L Tribillon. Real-time color holographic interferometer[J]. Appl Opt, 2002, 41(25): 5326-5333.
  • 5I Yamaguchi, T Matsumura, J Kato. Phase shifting color digital holography[J]. Opt Lett, 2002, 27(13): 1108-1110.
  • 6Zhang F, Yamaguchi I. Algorithm for reconstruction of digital holograms with adjustable magnification[J]. Opt Lett, 2004, 29(14): 1668-1670.
  • 7P Ferraro, S De Nicola, A Finizio, et al.. Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method[J]. Appl Phys Lett, 2004, 85(14): 2709-2711.
  • 8Domenico A, Giuseppe C, Sergio D N, et al.. Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength[J]. Opt Commun, 2006, 260(1): 113-116.
  • 9Zhao J L, Jiang H H, Di J L. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography[J]. Opt Express, 2008, 16(4): 2514-2519.
  • 10钱晓凡,王占亮,胡特,张永安.用单幅数字全息和剪切干涉原理重构光场相位[J].中国激光,2010,37(7):1821-1826. 被引量:25

二级参考文献96

  • 1钟丽云,张以谟,吕晓旭,钱晓凡,熊秉衡.球面参考光波数字全息的一些特点分析及实验[J].光学学报,2004,24(9):1209-1213. 被引量:18
  • 2尉迟亮,顾济华,刘薇,陶智.基于数字全息及离散余弦变换的图像数字水印技术[J].光学学报,2006,26(3):355-361. 被引量:50
  • 3D. C. Ghiglia, L. A. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[J]. J. Opt. Soc. Am. A, 1994, 11(1): 107-117.
  • 4D. Kerr, G. H. Kaufmann, G. E. Galizzi. Unwrapping of interferometric phase-fringe maps by the discrete cosine transform [J]. Appl. Opt. , 1996, 35(5):810-816.
  • 5Elena Lopez Lago, Raul de la Fuente. Amplitude and phase reconstruction by radial shearing interferometry[J]. Appl. Opt. , 2008, 47(3) : 372-376.
  • 6F. Lei, L. K. Dang. Measuring the focal length of optical systems by grating shearing interferometry[J]. Appl. Opt., 1994, 33(28): 6603-6608.
  • 7P. Bon, G. Maucort, B. Wattellier. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells [J]. Opt. Express, 2009, 17(15): 13080-13094.
  • 8C. Shakher, A. K. Nirala. Measurement of temperature using speckle shearing interferometry[J]. Appl. Opt., 1994, 33(11): 2125-2127.
  • 9Sharlotte L. B. Kramer, Guruswami Ravichandran, Kaushik Bhattacharya. Transmission wavefront shearing interferometry for photoelastic materials [J]. Appl. Opt. , 2009, 48 (13): 2450-2460.
  • 10Wolfgang Steinchen, Lianxiang Yang, Gerhard Kupfer. Vibration analysis by digital speckle pattern shearing interferometry[C]. SPIE, 1997, 3095: 158-165.

共引文献66

同被引文献160

引证文献18

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部