期刊文献+

基于压缩感知理论的无透镜离轴傅里叶全息编码与重建 被引量:9

Encoding and Reconstruction of Lensless Off-Axis Fourier Hologram Based on the Theory of Compressed Sensing
原文传递
导出
摘要 高计算复杂度是目前制约全息显示的瓶颈,针对这一难题,提出一种基于压缩感知理论与无透镜傅里叶变换相结合的全息图编码与重现算法。利用计算机生成无透镜离轴傅里叶全息图,再用压缩感知理论对全息图进行压缩采样和恢复,最后对恢复出的全息图进行重构,并再现原始图像。该方法的优点在于只采样全息图的部分有用系数就能很好地恢复出原始图像,从而解决了传感器采样数据过大的问题,降低了计算复杂度。仿真实验表明,20%的压缩采样时,重构出的全息图的相关系数为0.85,而50%时该系数为0.9999。通过搭建的全息再现系统进行实际验证,实验结果表明能够清晰地再现出原始图像,从而证明了该方法的可行性。 High computational complexity is the bottleneck of the holographic display. Aiming at the problem, a new hologram coding and reconstruction algorithm based on compressed sensing theory and lensless Fourier transform is proposed. Lensless off-axis Fourier hologram is generated by computer, and then the hologram is sampled and reconstructed by the theory of compressed sensing. At last, the original image is reconstructed by the hologram. The advantage of this method is that only some useful sampling coefficients of the hologram is used to reconstruct the original image well, which solves the problem of large volume of sampling data of the sensor and achieves the goal of reduction of the computational complexity. Simulation results show that the correlation coefficient of reconstructed image with 20 % compressive sampling rate is 0.8; when compressive sampling rate of hologram with 50%, the coefficient reaches 0. 9999. In addition, a holographic reconstruction system is built to verify the hologram compression sampling theory. The experimental results indicate that the original image can be clearly reconstructed by the system, which proves the feasibility of the method.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第2期117-121,共5页 Chinese Journal of Lasers
基金 国家自然科学基金(60872106) 校预研基金资助项目(zryy1311)
关键词 全息 信息光学 压缩感知 计算全息 全息显示 数字微镜器件 holography information optics compressed sensing computer-generated hologram holographicdisplay digital microscopic devices
  • 相关文献

参考文献7

二级参考文献75

  • 1吕晓旭,张以谟,钟丽云,罗印龙,佘灿麟.相移同轴无透镜傅里叶数字全息的分析与实验[J].光学学报,2004,24(11):1511-1515. 被引量:22
  • 2刘永军,宣丽,胡立发,曹召良,李大禹,穆全全,鲁兴海.高精度纯相位液晶空间光调制器的研究[J].光学学报,2005,25(12):1682-1686. 被引量:44
  • 3M.Stanley,P.B.Conway,S.Coomber et al..A novel electro-optic modulator system for the production of dynamic images fromgiga-pixel computer generated holograms[C].SPIE,2000,3956:13-22.
  • 4M.L.Huebschman,B.Munjuluri,H.R.Garner.Dynamicholographic 3D image projection[J].Opt.Express,2003,11(5):437-445.
  • 5T.Ito,K.Okano.Color electroholography by three coloredreference lights simultaneously incident upon one hologram panel[J].Opt.Express,2004,12(18):4320-4325.
  • 6A.Schwerdtner,R.Haussler,N.Leister.Large holographicdisplays for real-time applications[C].SPIE,2008,6912:69120T.
  • 7A.J.Cable,E.Buckley,P.Mash et al..Real-time binaryhologram generation for high-quality video projection applications[J].SID International Symposium Digest of Technical Papers,2004,35(2):1431-1433.
  • 8M.Reicherter,S.Zwick,T.Haist et al..Fast digital hologramgeneration and adaptive force measurement in liquid-crystal-display-based holographic tweezers[J].Appl.Opt.,2006,45(5):888-896.
  • 9V.Arrizon,E.Carreon,M.Testorf.Implementation of Fourierarray illuminators using pixelated SLM:efficiency limitations[J].Opt.Commun.,1999,160(4-6):207-213.
  • 10M.Agour,E.Kolenovic,C.Falldorf et al..Suppression ofhigher diffraction orders and intensity improvement of opticallyreconstructed holograms from a spatial light modulator[J].J.Opt.A:Pure Appl.Opt.,2009,11(10):105405.

共引文献73

同被引文献103

  • 1伍小燕,于瀛洁,白跃伟,聂黎,刘凯,潘芳煜,王小刚.基于频域变密度减采样的无放大同轴全息图的压缩传感层析重建[J].红外与激光工程,2020(S01):233-241. 被引量:1
  • 2Schnars U, Jueptner W. Digital Holography. Berlin, Heidel- berg: Springer, 2005.
  • 3Tziraki M, Jones R, French P M W, Melloch M R, Nolte D D. Photorefractive holography for imaging through turbid media using low coherence light. Applied Physics B, 2000, 70(1): 151-154.
  • 4Cand6s E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communi- cations on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 5Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 6Denis L, Lorenz D, Thi@baut E, Fournier C, Trede D. Inline hologram reconstruction with sparsity constraints. Optics Letters, 2009, 34(22): 3475-3477.
  • 7Brady D J, Choi K, Marks D L, Horisaki R, Lim S Compressive holography. Optics Express, 2009, 17(15) 13040-13049.
  • 8Gabor D. A new microscopic principle. Nature, 1948 161(4098): 777-778.
  • 9Hahn J, Lim S, Choi K, Horisaki R, Brady D J. Video- rate compressive holographic microscopic tomography. Op- tics Express, 2011, 19(8): 7289-7298.
  • 10Cull C F, Wikner D A, Mait J N, Mattheiss M, Brady D J. Millimeter-wave compressive holography. Applied Optics, 2010: 49(19): E67-E82.

引证文献9

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部