期刊文献+

石墨烯纸的制备及电容特性 被引量:5

Preparation and Electrochemical Capacitive Properties of Graphene Paper
下载PDF
导出
摘要 利用未经任何分散处理的氧化石墨溶胶在气-液界面自组装得到氧化石墨纸(=10 cm),将氧化石墨纸在不同温度下用水合肼蒸气还原制得石墨烯纸.采用扫描电子显微镜(SEM)、X射线衍射(XRD)、Raman光谱、X射线光电子能谱(XPS)及氮吸附对还原前后样品的微观结构、表面特性、元素组成及比表面积进行了表征,在此基础上考察了还原处理及还原温度对材料电容特性的影响.结果表明,在150℃下还原氧化石墨纸得到的石墨烯纸具有较好的电化学电容特性,其在1000 mA/g恒定充放电电流密度下,6 mol/L KOH电解质溶液中的质量比电容达到142 F/g,1000次充放电循环后电容保持率为99.8%. Large-scale (φ=10 cm ) graphene paper ( GP ) was prepared by the reduction of graphite oxide paper( GOP) self-assembled at the liquid/air interface with hydrazine hydrate vapor. The morphology, struc-ture, components and BET surface area of GOP and GP were characterized by scanning electron microscopy ( SEM ) , X-ray diffraction ( XRD ) , Raman spectroscopy, X-ray photoelectron spectroscopy ( XPS ) and nitrogen adsorption-desorption analysis. Furthermore, influence of reduction and reduction temperature on the super-capacitive properties was investigated. It is found that the graphene paper fabricated at 150 ℃ exhibits high capacitive behavior and long charge/discharge cycle life at a current density of 1000 mA/g. The discharge capacitance of the material in an aqueous electrolyte of 6 mol/L KOH is 142 F/g and the capaci-tance retention is 99. 8% after 1000 charge/discharge cycles.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第3期619-625,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:51177156/E0712,21276045)资助~~
关键词 自组装 氧化石墨纸 水合肼蒸气 石墨烯纸 超级电容器 Self-assemble Graphite oxide paper Hydrazine hydrate vapor Graphene paper Super-capacitor
  • 相关文献

参考文献1

二级参考文献47

  • 1Novoselov K. S. , Geim A. K. , Morozov S. V. , Jiang D. , Zhang Y. , Dubonos S. V. , Grigorieva I. V. , Firsov A. A. , Science, 2004, 306(5696), 666-669.
  • 2Lee C. G. , Wei X. D. , Kysar J. W. , Hone J. , Science, 2008, 321(5887) , 385-388.
  • 3Balandin A. A. , Ghosh S. , Bao W. Z. , Calizo I. , Teweldebrhan D. , Miao F. , Lau C. N. , Nano Lett. , 2008, 8(3), 902-907.
  • 4Service R. F. , Science, 2009, 324(5929), 875-877.
  • 5Ao Z. M. , Peeters F. M. , J. Phys. Chem. C, 2010, 114(34), 14503-14509.
  • 6Wehling T. O. , Novoselov K. S. , Morozov S. V. , Vdovin E. E. , Katsnelson M. I. , Geim A. K. , Liehtenstein A. I. , Nano Lett. , 2008, 8( 1 ), 173-177.
  • 7ShaoY. Y., ZhangS., EngelhardM. H., LiG. S., ShaoG. C., WangY., LiuJ., AksayI. A., LinY. H., J. Mater. Chem., 2010, 20, 7491-7496.
  • 8Schedin F. , Geim A. K. , Morozov S. V. , Hill E. W. , Blake P. , Katsnelson M. I. , Novoselov K. S. , Nat. Mater. , 2007, 6,652- 655.
  • 9Shi Y. M. , Kim K. K. , Reina A. , Hofmann M. , Li L. J. , Kong J. , ACS Nano, 2010, 4(5), 2689-2694.
  • 10Jeong H. M. , LeeJ. W. , Shin W. H. , Choi Y. J. , Shin H. J. , Kang J. K. , Choi J. W. , NanoLett. , 2011, 11(6), 2472-2477.

共引文献16

同被引文献99

  • 1Burchell T. D. , Carbon Materials for Advanced Technologie , Elsevier Science Ltd. , Amsterdam, 1999, 98.
  • 2Tan Z. Q. ,Chen G. X. , Zhu Y. , Science, 2011, 332(6037), 1537-1541.
  • 3Marta S. , Mokaya R. , Energy Environ. ScL , 2014, 7, 1250-1280.
  • 4QianW. J., SunF. X., XuY. H., QiuL. H., LiuC. H., WangS. D., YanF., Energy Environ. Sci. ,2014, 7, 379-386.
  • 5Zhang J. B. , Li J. Q. , Plant Sci. J. , 2011, 29(1), 42--49.
  • 6Luo M. , Zhang J. Y. , Chinese Carex Meyeriana Kunth, Jilin People' s Press, Changchun, 2008, 19-23.
  • 7Castell6 D. L. , Amor6s D. C. , Solano A. L. , Fuel Process. Technol. , 2002, 77/78, 325-330.
  • 8Pei J. C. , Lignocellulosic Chemistry( the Fourth Edition), China Light Industry Press, Beijing, 2012, 91.
  • 9MaoJ. Z. , MaJ. F. , XuF. , J. BiobasedMater. Bio. , 2011, 5(2), 209-218.
  • 10Mao J. Z. , Zhang L. M. , Xu F. , Cellulose Chem. Technol. , 2012, 46, 193-205.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部