期刊文献+

铁位掺杂对磷酸铁锂电化学性能的影响 被引量:7

Effects on the electrochemical performance of LiFePO_4 by doping at Fe site
下载PDF
导出
摘要 采用球磨法制备了铁位掺杂的磷酸铁锂(LiFePO4)正极材料。使用X射线衍射(XRD)、环境扫描电子显微镜(ESEM)对制备的材料进行表征,并将材料组装成扣式电池,使用蓝电系统和电化学工作站对其进行电化学性能测试和分析。结果表明,LiM0.05Fe0.95PO4和LiFePO4结构几乎一样,在0.1 C倍率下LiFePO4的首次放电比容量为125 mA·h/g,掺杂M(M=Mg,Cu,Zn)后首次放电比容量为145、141、139 mA·h/g,材料的电化学性能明显提高,其交流阻抗减小,循环50次后容量保持率为87%左右。 LiFePO4 ano de materials which were doped at the Fe site were prepared by ball milling.The samples were characterized by X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM), and they were made in button-type electrochemical cells for performance testing and analysis by using the Land system and electrochemical working station.Results indicated that the LiM0.05 Fe0.95 PO4 and LiFePO4 samples had the same crystal structure.At 0.1 C rates, the initial discharge capacity of LiFePO4 was 125 mA .h/g,and the initial discharge capacities were up to 145,141 ,and 139 mA.h/g after doping by M (M=Mg, Cu, and Zn) at Fe site, respectively.It improved the electrochemical properties of the materials significantly and reduced its ahernating-current impedance.The capacity remaining rate was about 87% after 50 cycles.
出处 《无机盐工业》 CAS 北大核心 2014年第3期75-78,共4页 Inorganic Chemicals Industry
关键词 磷酸铁锂 掺杂 电化学性能 LiFePO4 doping electrochemical properties
  • 相关文献

参考文献14

  • 1Padhi A K,Nanjundaswamy K S,Goodenough J B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].J.Electrochem.Soc.,1997,144(4):1188-1194.
  • 2Fisher C,Prieto V H,Islam M S.Lithium battery materials LiMPO4 (M=Mn,Fe,Co,and Ni) insights into defect association,transport mechanisms,and doping behavior[J].Chem.Mater.,2008,20:5907-5915.
  • 3Padhi A K,Nanjundaswamy K S,Masquelier C,et aLEffect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J].J.Electrochem.Soc.,1997,144(5):1609-1613.
  • 4Padhi A K,Nanjundaswamy K S,Masquelier C,et al.Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation[J].J.Electrochem.Soc.,1997,144(8):2581-2586.
  • 5Prosini P P,Lisi M,Zane D,et al.Determination of the chemical diffusion coefficient of lithium in LiFePO4[J].Solid State Ionics.,2002,148:45-51.
  • 6Amin R,Balaya P,Maier J.Anisotropy of electronic and ionic transport in LiFePO4 single crystals[J].Electrochem.Solid-State Lett.,2007,10(1):A13-A16.
  • 7Chung S Y,Bloking J T,Chiang Y M.Electronically conductive phosphor-olivines as lithium storage electrodes[J].Nat.Mater.,2002,1:123-128.
  • 8Lu Y,Shi J C,Guo Z P,et al.Synthesis of LiFe1-xNixPO4/C composites and their electrochemical performance[J]J.Power Sources.,2009,194:786-793.
  • 9Li L J,Li X H,Wang Z X,et al.Stable cycle-life properties of Tidoped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method[J].J.Physics and Chemistry of Solids.,2009,70:238-242.
  • 10Zhao R R,Lan B Y,Chen H Y,et al.Hydrothermal synthesis and properties of manganese-doped LiFePO4[J].Ionics.,2012,18:873-879.

同被引文献71

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部