期刊文献+

基于SL0算法的快速局部稀疏多径信道估计 被引量:4

Fast channel estimation for partial sparse multi-path based on SL0algorithm
下载PDF
导出
摘要 针对无线通信系统中经常出现的稀疏多径信道,应用压缩感知理论,建立了局部稀疏多径信道的数学模型,利用SL0算法对信道进行估计与研究。在建模的过程中,从数学角度对数学模型进行了推导,验证了在信道估计中应用压缩感知的可行性。采用的模型能够更精确地重构出原始信号,有效抑制干扰,降低误差。与已有的算法相比,SL0算法在均方误差、重构精度、匹配度以及算法复杂度等方面都要优于其它算法。理论分析和计算机仿真均表明,SL0算法的高效性和局部稀疏信道模型的实用性。 Sparse multi-path channels are often appeared in wireless communications. The theory of compressed sensing to estab- lish the mathematical model of the partial sparse multi-path channels, and then channel estimation is made by using the optimal SL0 algorithm. In the partial sparse multi-path channels, the mathematical model is derivated, and then the feasibility of channel estimation about the application of compressed sensing is verified from the mathematical point. The model can reconstruct the original signal more accurately so that the system can suppress the interference more effectively and reduce errors to a large extent. SL0 algorithm is better than other algorithms in MSE, reconstruction precision, matching degree as well as the compute complexity. The simulation results validate the proposed algorithm and channel model.
作者 刘婷 周杰
出处 《计算机工程与设计》 CSCD 北大核心 2014年第3期785-790,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61072137)
关键词 压缩感知 信道模型 受限等距 SL0算法 稀疏信道估计 compressed-sensing channel model RIP SL0 algorithm sparse channel estimation
  • 相关文献

参考文献10

二级参考文献54

  • 1唐勇,周明天,张欣.无线传感器网络路由协议研究进展[J].软件学报,2006,17(3):410-421. 被引量:201
  • 2杨彬,张玉清,宋文敬,胡予濮.基于NDIS中间层即时通监控的研究与实现[J].计算机工程,2006,32(24):135-137. 被引量:5
  • 3张增科.计算机网络[M].北京:清华大学出版社,2005.94-96.
  • 4周朝栋,王元坤,周良明,等.天线理论与工程[M].西安:西安电子科技大学出版社,1988.
  • 5张彦,罗济军(德),胡宏林.无线网状网:架构、协议与标准[M].郭达,张勇,彭晓川,译.北京:电子工业出版社,2008.
  • 6AKYILDIZ I F, WANG XU-DONG, WANG WEI-LIN. Wireless mesh networks: a survey, Broadband and wireless networking (BWN) lab [ J ]. School of Electrical and Computer Engineering, 2004, 47(4):445-487.
  • 7JENSEN T R, TOFT B. Graph Coloring Problems [ M ] . New York : Wiley Interscience, 1995 : 50 - 95.
  • 8MARTELLO S, TOTH P. Heuristic algorithms for the multiple knapsack problem [ J ]. Journal of Computing, 1981,27 ( 1 ) : 93 - 112.
  • 9FOTAKIS D, NIKOLETSEAS S, PAPADOPOULOU V, et al. Spirakis. Hardness results and efficient approximations for frequency assignment problems: Radio labelling and radio coloring[ J ]. Computing and Informatics 20, 2001,15 (6) : 121 - 180.
  • 10KATZELA I, NAGHSHINEH M. Channel assignment schemes for cellular mobile telecommunication systems : A comprehensive survey [ J]. IEEE Personal Communications, 1996,3(3) :10- 31.

共引文献26

同被引文献30

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部