期刊文献+

有理Bézier单元求解参数曲面上Laplace-Beltrami方程

Solving Laplace-Beltrami Equation on Parametric Surface by Rational Bézier Elements
下载PDF
导出
摘要 用有限元法数值求解时,定义在流形曲面上的偏微分方程的数值解精度会因为传统多边形单元的几何逼近误差而严重降低,为此提出基于有理Bernstein多项式的几何精确有限元法.首先插入重复节点从NURBS曲面直接生成有理Bézier单元,这一过程保持原有几何不变;然后通过Galerkin法建立参数曲面上包含Laplace-Beltrami微分算子的二阶椭圆偏微分方程的等效弱形式;针对Bernstein基函数的非插值性,通过配点法施加Dirichlet类型的边界约束,得到最优收敛的离散格式.数值算例结果表明,该方法能有效地减少网格离散误差,提高分析结果精度. When solving the partial differential equations on manifold surfaces by the finite element method,the accuracy of the numerical results may be seriously reduced by the geometrical errors which are caused by the approximation of the computational domains with the traditional polygonal elements.The geometric accurate finite element method is presented to remedy the issues by the parameterization of the geometrical domains with the rational Bernstein polynomials.Firstly,the new knots are repeatedly inserted into the parametric interval to convert the NURBS surface to the rational Bézier elements without changing it geometrically or parametrically.Then,the Galerkin method is employed to establish the equivalent weak forms for the second-order elliptic partial differential equations which involve the Laplace-Beltrami operator on the parametric surface.It's a difficult task to enforce the Dirichlet boundary conditions in the presented method because of the non-interpolation properties of the Bernstein functions.Therefore,the collocation method is employed to solve it,and the optimal convergence is acquired.Finally,the numerical examples show that the method can effectively reduce the discretization errors and improve the accuracy of the numerical results.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第3期385-391,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(51205320) 陕西省自然科学基础研究计划(2012JQ7002) 西北工业大学基础研究基金(JC201208)
关键词 有理Bézier单元 GALERKIN法 偏微分方程 流形曲面 Laplace-Beltrami方程 rational Bézier element Galerkin method partial differential equation manifold surface Laplace-Beltrami equation
  • 相关文献

参考文献14

  • 1龙驭球;龙志飞;岑松.新型有限元论[M]北京:清华大学出版社,2003.
  • 2Reuter M,Wolter F E,Peinecke N. Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids[J].Computer-Aided Design,2006,(04):342-366.
  • 3Reuter M,Biasotti S,Giorgi D. Discrete LaplaceBeltrami operators for shape analysis and segmentation[J].Computers & Graphics,2009,(03):381-390.
  • 4Rustamov R M. Laplace-Beltrami eigenfunctions for deformation invariant shape representation[A].Aire-laVille:Eurographics Association Press,2007.225-233.
  • 5Sevilla R,Fernandez-Mendez S,Huerta A. NURBS-enhanced finite element method for Euler equations[J].International Journal for Numerical Methods in Fluids,2008,(09):1051-1069.
  • 6Wang Y,Lui L M,Gu X. Brain surface conformal parameterization using Riemann surface structure[J].IEEE Transactions on Medical Imaging,2007,(06):853-865.
  • 7Gee M,Ramm E,Wall W A. Parallel multilevel solution of nonlinear shell structures[J].Computer Methods in Applied Mechanics and Engineering,2005,(21):2513-2533.
  • 8Xu G. Discrete Laplace-Beltrami operators and their convergence[J].Computer Aided Geometric Design,2004,(08):767-784.
  • 9Dziuk G. Finite elements for the Beltrami operator on arbitrary surfaces[A].Heidelberg:Springer,1988.142-155.
  • 10Demlow A,Dziuk G. An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces[J].SIAM Journal on Numerical Analysis,2007,(01):421-442.

二级参考文献10

  • 1黄艾香,周天孝.有限元理论与方法[M].北京:科学出版社,2009.
  • 2Rogers D F.An introduction to NURBS with historicalperspective[M].San Diego:Academic Press,2001
  • 3Hughes T J R,Cottrell J A,Bazilevs Y.Isogeometricanalysis:CAD,finite elements,NURBS,exact geometry andmesh refinement[J].Computer Methods in AppliedMechanics and Engineering,2005,194(39?41):4135 4195
  • 4Benson D J,Bazilevs Y,Hsu M C,et al.Isogeometric shellanalysis:the Reissner-Mindlin shell[J].Computer Methodsin Applied Mechanics and Engineering,2010,199(5?8):276289
  • 5Cottrell J A,Reali A,Bazilevs Y,et al.Isogeometric analysisof structural vibrations[J].Computer Methods in AppliedMechanics and Engineering,2006,195(41?43):5257 5296
  • 6Gomez H,Hughes T J R,Nogueira X,et al.Isogeometricanalysis of the isothermal Navier-Stokes-Korteweg equations[J].Computer Methods in Applied Mechanics andEngineering,2010,199(25?28):1828 1840
  • 7Wang D D,Xuan J C.An improved NURBS-basedisogeometric analysis with enhanced treatment of essentialboundary conditions[J].Computer Methods in AppliedMechanics and Engineering,2010,199(37?40):2425 2436
  • 8Atluri S N,Zhu T.A new meshless local Petrov-Galerkin(MLPG)approach in computational mechanics[J].Computational Mechanics,1998,22(2):117 127
  • 9Codina R.Comparison of some finite element methods forsolving the diffusion-convection-reaction equation[J].Computer Methods in Applied Mechanics and Engineering,1998,156(1?4):185 210
  • 10do Carmo E G D,Alvarez G B.A new stabilized finiteelement formulation for scalar convection-diffusion problems:the streamline and approximate upwind?Petrov-Galerkinmethod[J].Computer Methods in Applied Mechanics andEngineering,2003,192(31?32):3379 3396

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部