期刊文献+

一种仿水下生物视觉的大坝裂缝图像增强算法 被引量:5

A dam crack image enhancement algorithm based on underwater biological vision
原文传递
导出
摘要 针对水下大坝裂缝图像非均匀亮度、低信噪比(SNR)和低对比度等特点,提出了一种仿水下生物视觉的大坝裂缝图像增强算法。算法借鉴生物视觉亮度调节特性改善裂缝图像的亮度非均匀问题,并在模拟水下生物"鲎鱼"视觉的侧抑制增强机制机理的基础上,引入自适应的非对称窄条引导模型,对裂缝图像中的线性特征进行增强。理论和实验结果表明,本文算法能够在有效抑制噪声的同时,对图像线性特征增强。 In view of the characteristics such as non-uniform brightness,low s ignal to noise ratio as well as the low contrast of the underwater dam crack image,this paper brings up a novel dam crack image enhancement algorithm,which adopts the simulation of underwater biological vision.With ref erence to the brightness adjustment characteristics of the biological vision,this algorithm also improve s the non-uniform brightness of underwater dam crack image.Furthermore,in order to improve the low signal-to -noise ratio and solve the problem of low contrast of dam crack image,on the basis of lateral inhibition enhancement mechanism of the "horseshoe crab fish",we introduce the adaptive asymmetric narrow strip guidance models,w hich can help to enhance the linear characteristics of the crack image.The theoretical and the experimental results got from this paper show that the proposed algorithm can significantly eliminate the noises of the underw ater image,and also better improve the definition of the image from the physical standpoint.And at the sam e time,by strengthening the edges of crack image and enhancing the subtle liner structures of interest in th e crack image,this algorithm improves the contrast of the interesting areas,whic h is of great significance for the subsequent crack feature extraction.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第2期372-377,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61273170) 高等学校博士学科点专项科研基金(20120094120023)资助项目
关键词 大坝裂缝图像 仿生 侧抑制 非对称窄条 自适应 dam crack image bionic lateral inhibition asymmetrical narrow stick adaptive
  • 相关文献

参考文献17

二级参考文献127

共引文献252

同被引文献53

  • 1陈波,张华,汪双,王皓冉,刘昭伟,李永龙,谢辉.基于全卷积神经网络的坝面裂纹检测方法研究[J].水力发电学报,2020(7):52-60. 被引量:25
  • 2姚宏宇,李弼程.基于广义图像灰度共生矩阵的图像检索方法[J].计算机工程与应用,2004,40(34):98-100. 被引量:19
  • 3翟艺书,柳晓鸣,涂雅瑗,陈亚宁.一种改进的雾天降质图像的清晰化算法[J].大连海事大学学报,2007,33(3):55-58. 被引量:17
  • 4HAN Chumming, GUO Hua-dong, SHAO Yun,et al. A method to segment SAR images based on histogramrAT. Proc. of IEEE International Geoscience and Remote Sens- ing SymposiumFC. 2005,5 : 3694-3696.
  • 5AI-Zahrani R A, EI-7aart A. SAR images segmentation u- sing edge information[A]. Proc. of 2nd International Con- ference on Computer Engineering and Technology (IC- CET) [C. 2010,4: V4-496-499.
  • 6XUE Xiao-rong,WANG Hong-fu,XlANG Fang,et al. A new method of SAR Image Segmentation Based on FCM and wavelet transform [A. Proc. of 2012 5th International Congress on Image and Signal Processing (CISP)I-O1. 2012,621-624.
  • 7Frakt A,Lev Ari H,AS Willsky A S,et al. A generalized levinson algorithm for covariance extension with applica- tion to multiscale autoregressive modeling [,J. IEEE Transactions on Information Theory, 2003,49 (2) : 411- 424.
  • 8DONG Gang-gang,WANG Na, HU Oan-bin, et al. SAR im- age segmentation combining the PM diffusion model and MRF model[,A]. Proc. of 2012 IEEE International Geosci- ence and Remote Sensing Symposium (IGARSS)I-C]. 2012,4307-4310.
  • 9Alparone L, Argenti F, Bianchi T, et al. Multiresolution despeckling of VHR SAR images based on MRF segmen- tation[A]. Proc. of 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) [,C]. 2010, 288-291.
  • 10Basseville M, Benveniste A,Willsky A S. Multiscale au- toregressive processes, part I and part lit-J]. IEEE Trans. on Signal Processing, 1992,40(8) : 1915-1955.

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部