期刊文献+

一类分数阶微分方程的振动性定理

Oscillation Theorem for a Kind of Fractional Differential Equations
下载PDF
导出
摘要 利用广义Riccati变换和不等式技巧,给出了一类分数阶微分方程解的振动性的两个准则. By using the Riccati transformation technique and the inequality technique, two oscillation criteria for a class of fractional order differential equations are obtained.
出处 《滨州学院学报》 2013年第6期18-22,共5页 Journal of Binzhou University
基金 国家自然科学基金资助项目(61374074) 山东省自然科学基金资助项目(ZR2012AM009)
关键词 分数阶微分方程 振动准则 Riemann—Liouville微分算子 fractional differential equation oscillation criteria Riemann-Liouville differential operator
  • 相关文献

参考文献6

  • 1Chen D. Oscillation criteria of fractional differential equations[J]. Adv Differ Equ,2012,33:1 - 18.
  • 2Han Zhenlai,Zhao Yige,Sun Ying, et al. Oscillation for a class of fractional differential equation [J].Discrete Dynamics in Nature and Society,2013 ,Article ID 390282,2013 : 1 - 6.
  • 3Grace S R,Agarwal R P,Wong J Y,et al. On the oscillation of fractional differential equations[J]. Frac Calc Appl Anal,2012,15:222- 231.
  • 4Kilbas A A, Srivastava H M, Trujillo J J. Theory and applications of fractional differential equa- tions[M]. Amsterdam: Elsevier, 2006.
  • 5Diethelm K. The Analysis of Fractional Differential Equations[M]. Berlin : Springer, 2010.
  • 6Hardy G H, Littlewood J E, P61ya G. Inequalities[M]. 2nd ed. Cambridge: Cambridge University Press,1959.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部