期刊文献+

基于ESN和Elman神经网络的交通流预测对比研究 被引量:3

Comparative Study on Traffic Flow Prediction Based on ESN and Elman Neural Networks
下载PDF
导出
摘要 实时准确的短时交通流预测是实现智能交通系统中交通控制和交通诱导的关键技术之一。由于短时交通流数据的复杂性,首先采用饱和关联维数法和Cao氏法对交通流时间序列的嵌入维数和延迟时间进行计算,并采用Wolf方法计算相空间重构后的交通流时间序列的最大Lyapunov指数。结果表明,交通流时间序列具有混沌特性,可预测性较好。随后,分别采用基于ESN和Elman神经网络的预测方法对交通流时间序列进行预测,结果表明,两者在预测精度相当的情况下,前者的训练速度较后者有了极大的提高。 The real-time and precise short-term traffic flow prediction is the key factor for the realizing of traffic control and traffic guidance in the intelligent traffic system. As the complexity of short-term traffic flow data, the saturated correlation dimension method and Cao' s method are adopted to calculate the embedding dimension and delay time of traffic flow time series, and the Wolf method is applied to calculate the largest Lyapunov exponent of the reconstructed traffic flow time series. The result shows that the traffic flow series is a chaotic sequence with better predictability. Then the prediction methods based on ESN and Elman neural networks are applied to predict traffic flow time series respectively, it indicates that the former has quicker prediction speed on the condition of the same prediction accuracy.
作者 罗轶
出处 《湖南工业大学学报》 2013年第6期67-72,共6页 Journal of Hunan University of Technology
基金 湖南省教育厅科学研究基金资助项目(11C0816)
关键词 交通信息工程及控制 相空间重构 回声状态网络 ELMAN神经网络 交通流预测 traffic information engineering and control phase space reconstruction echo state network Elman neural networks traffic flow prediction
  • 相关文献

参考文献11

二级参考文献55

共引文献105

同被引文献35

  • 1NIU D, WANG Y, WU D. Power load forecasting using support vector machine and ant colony optimization[ J]. Expert Systems "with Applications, 2010, 37(3): 2531-2539.
  • 2GUO Z, ZHAO W, LU H, et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model [J]. Renewable Energy, 2012, 37(1) : 241 -249.
  • 3WU Z, HUANG N. Ensemble empirical mode decomposition: a noise-assisted data analysis method [ J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
  • 4YEH J R, SHIEH J S, HUANG N E. Complementary ensemble em- pirical mode decomposition: a novel noise enhanced data analysis method[ J]. Advances in Adaptive Data Analysis, 2010, 2(2) : 135 - 156.
  • 5JAEGER H, LUKOSEVICIUS M, POPOVICI D. Optimization and applications of echo state networks with leaky integrator neurons [J]. Neural Networks, 2007, 20(3): 335-352.
  • 6CHEN W, WANG Z, XIE H, et al. Characterization of surface EMG signal based on fuzzy entropy [ J]. IIEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15 (2) : 266 - 272.
  • 7ZHANG X, LAI K, WANG S. A new approach for crude oil price analysis based on empirical mode decomposition [ J ]. Energy Economics, 2008, 30( 3 ) : 905 - 918.
  • 8张海鹏.浅析煤矿中的水灾害防治[J].中国安全生产科学技术,2008,4(5):100-103. 被引量:21
  • 9钱家忠,吕纯,赵卫东,潘婧.Elman与BP神经网络在矿井水源判别中的应用[J].系统工程理论与实践,2010,30(1):145-150. 被引量:50
  • 10师彪,李郁侠,于新花,闫旺.基于改进粒子群-模糊神经网络的短期电力负荷预测[J].系统工程理论与实践,2010,30(1):157-166. 被引量:46

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部