期刊文献+

基于空间加权距离的自适应Fuzzy C-Means算法研究 被引量:2

An Adaptive Fuzzy C-Means Clustering Algorithm Based on Spatial Weighted Distance
下载PDF
导出
摘要 空间聚类不仅应考虑GIS对象属性特征的相似性,还应考虑对象的空间邻近性。不同属性、位置特征在聚类中起到的作用不同。采用信息熵方法计算空间距离中各属性距离、位置距离的权重,权值大小用于度量相应特征在fuzzy c-means隶属度计算时的作用大小,并引入相似性指标,当两个聚类之间的相似度高于某个合并阈值时,则对应的一对聚类进行合并,从而克服需预先设置聚类类数的问题。通过应用实例的聚类有效性分析,与普通空间距离相比,基于空间加权距离的FCM算法具有稳定性和有效性。 Spatial clustering should not only consider the similarity of attributes features of GIS objects , but also consider spatial prox-imity of objects .Different attributes and location features play different roles in the clustering .Entropy method is used to calculate the weight of each attribute , location distance , which can measure the effect size of corresponding feature when fuzzy c -means member-ship is calculated.Moreover, fuzzy similarity index is used to assess the similarity of two clusters and similar clusters will be merged if the similarity between clusters is higher than a threshold , which can avoid presetting the number of clusters .The new algorithm is il-lustrated and analyzed by cluster validity indices and the result indicates it is more robust and effective for GIS data than the original FCM algorithm based on normal spatial distance .
出处 《测绘与空间地理信息》 2014年第2期18-21,24,共5页 Geomatics & Spatial Information Technology
基金 山东省自然科学基金项目(ZR2012DM010) 国家自然科学基金项目(40701138)资助
关键词 FUZZY e—means 空间加权距离 信息熵 自适应聚类合并 fuzzy c-means fuzzy c-means spatial weighted distance entropy adaptive cluster merging
  • 相关文献

参考文献12

二级参考文献66

  • 1张和生,张毅,胡东成.一种区域交通状态定量分析方法[J].吉林大学学报(工学版),2009,39(2):336-342. 被引量:6
  • 2刘旭华,王劲峰.空间权重矩阵的生成方法分析与实验[J].地球信息科学,2002,4(2):38-44. 被引量:43
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4张和生,张毅,胡东成,王明军.区域交通状态分析的时空分层模型[J].清华大学学报(自然科学版),2007,47(1):157-160. 被引量:30
  • 5MONTAZERI-GH M,FOTOUHI A.Traffic condition recognition usingthe K-means clustering method[J].Scientia Iranica B,2011,18(4):930-937.
  • 6美国交通研究委员会.道路通行能力手册[M].3版.任福田,等译.北京:中国建筑工业出版社,1991.
  • 7A Baraldi,P Blonda.A survey of fuzzy clustering algorithms for pattern recognition I[J].IEEE Transactions on Systems,Man and Cybernetics,Part B, 1999;29(6) :778-785.
  • 8J C Bezdek.Pattern recognition with fuzzy objective function algorithms[M].Plenum Press,New York.
  • 9R Duda.P Hart.Pattern classification and scene analysis[M].Wiley New York,1973.
  • 10A De luca,S Termini.A definition of a nonprobabilistic entropy in the setting of fuzzy set theory[J].Inform and control,1972;20:301-312.

共引文献300

同被引文献28

  • 1刘小芳,曾黄麟,吕炳朝.点密度函数加权模糊C-均值算法的聚类分析[J].计算机工程与应用,2004,40(24):64-65. 被引量:28
  • 2杨勇,郑崇勋,林盘,潘晨,顾建文.基于改进的模糊C均值聚类图像分割新算法[J].光电子.激光,2005,16(9):1118-1122. 被引量:20
  • 3刘小芳.点密度加权FCM算法的聚类有效性研究[J].计算机工程与应用,2006,42(15):20-22. 被引量:8
  • 4王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:45
  • 5Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
  • 6Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.
  • 7Lou Xiaojun, Li Junying, Liu Haitao. Improved fuzzy C-means clustering algorithm based on cluster density[J]. Journal of Computational Information Systems,2012, 8(2): 727-737.
  • 8Ambroise C, Govaert G. Convergence of an EM-type algorithm for spatial clustering[J]. Pattern Recogni- tion Letters, 1998, 19(10): 919-927.
  • 9Ayech M W, E1 Kalti K, E1 Ayeb 13. Image segmen- tation based on adaptive fuzzy-C-means clustering [C]. Pattern Recognition (ICPR), 2010 20th Inter- national Conference, New York: IEEE, 2010 : 2306- 2309.
  • 10Roweis S. EM algorithms for PCA and SPCA[J]. In Advances in Neural Information Processing Systems, 1998, 626-632.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部