期刊文献+

边界元法计算复合材料的双向拉伸强度

Calculation for biaxial tensile strength of composite materials using boundary element method
下载PDF
导出
摘要 采用边界元法,从理论上分析了交织玻璃纤维增强复合材料双向拉伸强度特性。对双向加载的十字型试样,建立了边界元模型,编写了计算程序,获得了材料双向拉伸强度的数值解;同时,建立了有限元模型,进行了对比分析。对材料十字型试样进行了双向拉伸试验,获得不同载荷比下的双向拉伸强度。理论分析和试验结果表明,边界元法理论结果与有限元结果及试验结果均具有较好的一致性,可利用边界元法研究复合材料双向拉伸性能;边界元法在计算效率上优于有限元方法,计算精度上与之相当;交织玻璃纤维增强复合材料具有明显的双向弱化效应,等双拉加载时,材料的双向拉伸强度(纵向强度)仅为单向拉伸强度的60.5%。 The strength properties of the interwoven glass fiber reinforced composite under biaxial tensile loading were theoreti cally analyzed by means of boundary element method. Based on biaxial loaded cruciform specimen, a boundary element model and program were developed for obtaining the numerical results of the biaxial tensile strength of the material. In the meanwhile, a finite element model was analyzed eontrastively.The experimental tests were performed applying biaxial tensile loads to cruciform speci mens. Biaxial tensile strength of the material was obtained at different loading ratios.The theoretical analysis and experimental results show that the theory of the boundary element method has a better consistency with the finite element results and the experimental re sults.Therefore,the boundary element method can be applicable to the investigation of the biaxial tensile properties of composite. BEM has better computational efficiency than FEM while the calculating accuracy is the same. Moreover, the biaxial weakening of the interwoven fiber reinforced composites is remarkable, and the biaxial tensile strength (longitudinal strength) of the material is only 60.5% of the uniaxial tensile strength at the loading ratio of 1 : 1.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2014年第1期96-101,共6页 Journal of Solid Rocket Technology
基金 江苏省高校优势学科建设工程项目资助 南京航空航天大学研究生创新基地开放基金项目(kfjj130104)
关键词 边界元法 纤维增强复合材料 双向拉伸 双向强度 boundary element method fiber reinforced composite biaxial tensile biaxial strength
  • 相关文献

参考文献15

二级参考文献23

  • 1王人杰.正交各向异性介质平面问题的基本解[J].上海交通大学学报,1996,30(5):124-130. 被引量:8
  • 2Nie S, Basaran C. A micromechanical model for effective elastic properties of particulate composites with imperfect interracial bonds [J]. International Journal of Solids and Structures, 2005, 42: 4179-4191.
  • 3Jiang Y P, Tohgo K, Shimamura Y. A micro-mechanics model for composites reinforced by regularly distributed particles with an inhomogeneous interphase [ J ]. Computational Materials Science, 2009, 46: 507-515.
  • 4Qu J. Eshelby tensor for an elastic inclusion with slightly weakened interface [J]. Journal of Applied Mechanics, 1993, 60: 1048-1050.
  • 5Hashin Z. The spherical inclusion with imperfect interface [J]. Journal of the Mechanics and Physics of Solids, 1991, 58: 444-449.
  • 6Hashin Z. Extremum principles for elastic heterogeneous media with imperfect interface and their application to hounding effective moduli [J]. Journal of the Mechanics and Physics of Solids, 1992, 40(4): 767-781.
  • 7Achenbach J D, Zhu H. Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites [J] Journal of the Mechanics and Physics of Solids , 1989, 37 (3) : 381-393.
  • 8Achenbach J D, Zhu H. Effect of interphases on micro and macromechanical behavior of hexagonal-array fiber composites [J']. ASME Journal of Applied Mechanics, 1990, 57: 956- 963.
  • 9Zhu H, Achenbach J D. Effect of fiber- matrix interphase defects on microlevel stress states at neighboring fibers [J]. Journal of Composite Materials, 1991, 25 : 224-238.
  • 10Pan L, Adams D O, Rizzo F J. Boundary element analysis for composite materials and a library of Green' s functions[J]. Composite Structures, 1998, 66(5): 685-693.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部