期刊文献+

一种三元Newton-Thiele型有理插值方法

A Method of Triple Newton-Thiele Type Rational Interpolation
下载PDF
导出
摘要 结合二元Thiele型插值分叉连分式和牛顿插值多项式,通过引入混合偏差商构造三元有理插值,进一步给出其特征定理和误差估计,最后给出数值算例. The bivariate Thiele-type interpolating branched continued fractions and New-ton interpolation polynomials are combined. By introducing the so-called blending partial differences, a triple rational interpolation scheme is obtained. The characteristic theorem and error estimation are presented. Finally, an example is given.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期107-113,共7页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(11371243) 上海市教委科研创新基金重点资助项目(13ZZ068) 上海市重点学科建设资助项目(S30104)
关键词 混合偏差商 连分式 有理插值 blending partial difference continued fraction rational interpolation
  • 相关文献

参考文献2

二级参考文献9

  • 1BAKER G A,Jr,GRAVES-MORRIS P R.PadéApprox- imants[]..1995
  • 2HUTTON M F,FRIEDLAND B.Routh approximations for reducing order of linear time-invariant system[].IEEE Transaction Automatic Control.1975
  • 3MOHAMMAD J.Large-scale Systems:Modeling and Con- trol[]..1983
  • 4ISMAIL O.On multipoint Padéapproximation for dis- crete interval systems[].Proceedings of the Twenty- Eighth Southeastern Symposium on System Theory.1996
  • 5ISMAIL O,BANDYOPADHYAY B,GOREZ R.Discrete in- terval system reduction using Padéapproximation to allow retention of dominant poles[].IEEE Transac- tion Circuits and Systems.1997
  • 6Bandyopadhyay B,Ismail O,Gorez R.Routh-Pade Approximation for Interval Systems[].IEEE Trans Automat Contr.1994
  • 7Chuanqing Gu.Thiele-type and Lagrange-type generalized inverse rational interpolation for rectangular complex matrices[].Linear Algebra and Its Applications.1999
  • 8P. R. Graves-Morris,C. D. Jenkins.Vector-valued, rational interpolants III[J].Constructive Approximation.1986(1)
  • 9P. R. Graves-Morris,T. R. Hopkins.Reliable rational interpolation[J].Numerische Mathematik.1980(2)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部