摘要
结合二元Thiele型插值分叉连分式和牛顿插值多项式,通过引入混合偏差商构造三元有理插值,进一步给出其特征定理和误差估计,最后给出数值算例.
The bivariate Thiele-type interpolating branched continued fractions and New-ton interpolation polynomials are combined. By introducing the so-called blending partial differences, a triple rational interpolation scheme is obtained. The characteristic theorem and error estimation are presented. Finally, an example is given.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第1期107-113,共7页
Journal of Shanghai University:Natural Science Edition
基金
国家自然科学基金资助项目(11371243)
上海市教委科研创新基金重点资助项目(13ZZ068)
上海市重点学科建设资助项目(S30104)
关键词
混合偏差商
连分式
有理插值
blending partial difference
continued fraction
rational interpolation