期刊文献+

带变量核的分数次极大算子在加权L^p空间上的有界性

Boundedness of Fractional Maximal Operators with Variable Kernels on Weighted Morrey Spaces
下载PDF
导出
摘要 利用核函数Ω的性质,证明了带变量核的分数次极大MΩ,α是加权Lp空间上的有界算子,从而推广了以往非变量核的结果. By using the properties of the function Ω,the boundedness results on the weighted Lpspaces are established for the fractional maximal operators MΩ,αwith variable kernels,which extends no-variable kernel results that have been achieved in previous research.
出处 《兰州工业学院学报》 2014年第1期74-75,共2页 Journal of Lanzhou Institute of Technology
基金 国家自然科学基金项目(11161402) 陇东学院青年科技创新项目(XYLK1301)
关键词 加权Morrey空间 分数次积分算子 变量核 Weighted Lp spaces fractional maximal operators variable kernel.
  • 相关文献

参考文献8

  • 1Muckenhoupt B,Wheeden R L. Weighted norm inequalities for singular and fractionalintegrals[J].Trans Amer Math Soc,1971.249-258.
  • 2Ding Y. Weak type bounds for a class of rough operaters with powerweights[J].Proc Amer Math Soc,1997.2939-2942.
  • 3Ding Y,Lu S Z. Weighted norm inequalities for fractional integral operaters with roughkernel[J].Canad J Math,1998.29-39.
  • 4Garcia-Cuerva J,Rubio de Francia J L. Weighted Norm Inequalities and Related Topics[M].NorthHolland,Amsterdam,1885.
  • 5邵旭馗,陶双平.带变量核的Marcinkiewicz积分交换子的加权Lipschitz估计[J].系统科学与数学,2012,32(7):915-921. 被引量:20
  • 6邵旭馗,陶双平,王素萍.带变量核的参数型Marcinkiewicz积分在弱Hardy空间上的有界性[J].应用数学,2013,26(1):177-181. 被引量:10
  • 7Komori Y,Shirai S. Weighted Morrey spaces and a singular integral operater[J].Math Nachr,2009.219-231.
  • 8Ding Y,Lin C C,Shao S L. On the Marcinkiewicz integral with variable kernels[J].Indiana Univ Math J,2004.805-821.

二级参考文献14

  • 1Torchinsky A, Wang S L. A note on Marcinkiewicz integral. Coll. Math., 1993, 60: 235-243.
  • 2Ding Y, Lu S Z, Yabuta K. On commutator of Marcinkiewicz integrals with rough kernel. Journ. Math. Anal. Appl., 2002, 275: 60-68.
  • 3Hu G, Yan D. On the commutator of a homogeneous Marcinkiewicz integral. Journ. Math. Anal. Appl., 2003, 283: 351-361.
  • 4Lu S, Wu H X. On the commutators of singular integrals related to block spaces. Nagoya Math. J., 2004, 173: 205-223.
  • 5Bloom S. A commutator theorem and weighted BMO. Trans Amer. Math. Soc., 1985, 292: 103- 122.
  • 6Hu B, Gu J. Necessary and sufficient conditions for boundedness of commutators with weighted Lipschitz function. Journ. Math. Anal. Appl., 2008, 340(1): 598-605.
  • 7Garcia-cuerva J, Rubio defrancia J L. Weighted Norm Inequalities and Related Top Ics. New York: North-Holland Amsterdam, 1995.
  • 8Stein E M.On the function of Littlewood-Paley, Lusin and Marcinkieicz[J]. Trans. Amer. Math. Soc. , 1958,88: 430-466.
  • 9Hormander L. Estimates for translation invariant operators in LP spaces[J]. Acta. Math .1960.104: 93.
  • 10Sakamoto M. Yabuta K. Boundedness of Marcinkiewicz functions[J]. Studia. Math . 1999.135:103.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部