期刊文献+

显著区域检测算法综述 被引量:6

Survey of Salient Region Detection Algorithms
下载PDF
导出
摘要 检测视觉上显著的区域对于很多计算机视觉应用都是非常有帮助的,例如:内容保持的图像缩放,自适应的图像压缩和图像分割。显著区域检测成为视觉显著性检测领域的重要研究方向。文中介绍了显著区域检测算法的研究现状并分析了典型的显著区域检测方法。首先,将现有的显著区域检测算法进行了分类和分析。然后,在一个包含1 000幅图像的公开数据集上对典型的显著区域检测算法进行了评测。最后对现有的显著区域检测算法进行了总结并展望了下一步发展方向。 Detection of visually salient region is useful for many computer vision applications such as content aware image resizing, adaptive image compression and image segmentation. Salient region detection becomes an appealing research field in visual saliency detection. In this survey, the author introduces the research status of salient region detection methods and analyzes the classical approaches. First, the paper categorizes and analyzes the existing salient region detection algorithms, then evaluates the classical salient region detection algorithms on a public dataset including 1 000 images. Finally, the paper states the conclusion and discusses the future work on salient region detection.
出处 《智能计算机与应用》 2014年第1期38-39,44,共3页 Intelligent Computer and Applications
基金 国家自然科学基金(61100187) 中央高校基本科研业务费专项资金(2010046) 中国博士后科学基金(2011M500666)
关键词 显著区域检测 视觉显著性检测 评测 Salient Region Detection Visual Saliency Detection Evaluation
  • 相关文献

参考文献18

  • 1ITTI L,KOCH C,NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,(11):1254-1259.
  • 2MURRAY N,VANRELL M,OTAZU X. Saliency estimation using a non-parametric low-level vision model[A].2011.433-440.
  • 3HOU X,ZHANG L. Saliency detection:A spectral residual approach[A].2007.1-8.
  • 4BAN S,JANG Y,LEE M. Affective saliency map considering psychological distance[J].Neurocomputing,2011,(11):1916-1925.
  • 5LIU T,SUN J,ZHENG N. Learning to detect a salient object[A].2007.1-8.
  • 6LIU T,YUAN Z,SUN J. Learning to detect a salient object[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,(02):353-367.
  • 7KO B C,NAM J Y. Object-of-interest image segmentation based on human attention and semantic region clustering[J].Journal of the Optical Society of America A: Optics, Image Science, and Vision,2006,(10):2462-2470.
  • 8RUTISHAUSER U,WALTHER D,KOCH C. Is bottom-up attention useful for object recognition[A].2004.30-37.
  • 9ZHANG G X,CHENG M M,HU S M. A shape-preserving approach to image resizing[A].2009.1897-1906.
  • 10EINHAJS ER W,KO^ENIG P. Does luminance-contrast contribute to a saliency map for overt visual attention[J].European Journal of Neuroscience,2003,(05):1089-1097.

同被引文献36

  • 1刘真,任乐义.基于加网复制的光栅防伪技术研究[J].中国印刷与包装研究,2010,2(S1):153-156. 被引量:13
  • 2姜楠,王健,钮心忻,杨义先,周锡增.信息隐藏模型及容量分析[J].计算机应用研究,2005,22(12):116-117. 被引量:4
  • 3WANG Qi, WANG Xiao-bo. Reaserch on the Relationship of Grayscale between Digital Grating and the Host Image[J]. Appl Opt,2014,53 (16): 66-72.
  • 4JAIN A. Fundamentals of Digital Image Processing[M]. Upper Saddle River: Prentice Hall, 1989.
  • 5CHENG Ming-ming, ZHANG Guo-xin, NILOY J M, et al. Global Contrast Based Salient Region Detection[C]// IEEE Conference on Computer Vision and Pattern Recognition,2011:409-416.
  • 6LEGGE G E, FOLEY J M. Contrast Masking in Human Vision [J]. JOSA, 1980,70(12) : 1458-1471.
  • 7HECHT S. The Visual Discrimination of Intensity Mid the Weber-Fechner Law[J]. The Journal of General Physiology, 1924,7 (2) : 235-267.
  • 8ACHANTAR, HEMAMI S, ESTRADA F, et al. Frequency Tuned Salient Region Detection[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1597- 1604.
  • 9姚莉.数字半调技术及其评价方法研究[J].计算机工程与应用,2010,46(3):4-8. 被引量:16
  • 10谢建全,谢勍,黄大足,阳春华.图像信息隐藏不可感知性指标研究[J].小型微型计算机系统,2011,32(5):953-957. 被引量:7

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部