摘要
在延迟随机微分方程领域,随机分步theta(SST)数值方法的应用成果较少。研究随机分步theta(SST)方法应用于随机延迟微分方程(SDDEs)时的稳定性性质,给出在线性增长条件及单边Lipschitz条件下,SST数值解能保持原方程真实解几乎必然指数稳定的一个充分条件。数值模拟验证了所得结果的正确性及有效性。
Given little literature on stochastic split-step theta (SST) method in stochastic delay dif- ferential equations ( SDDEs), this study will focus on the numerical stability of SST method for SDDEs. Sufficient condition under which SST method can reproduce the almost sure exponential stability of the ex- act solutions to stochastic delay differential equations are investigated with given linear growth condition and one-side Lipschitz condition. The numerical experiment confirms the correctness of the obtained theo- rem.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2014年第1期13-20,共8页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(11271101)
山东省自然科学基金青年项目(ZR2012AQ027)