期刊文献+

短时交通流复杂动力学特性分析及预测 被引量:17

Analysis and prediction of complex dynamical characteristics of short-term traffic flow
原文传递
导出
摘要 为揭示短时交通流的内在动态特性,利用非线性方法对交通流混沌特性进行识别,为短时交通流的预测提供基础.基于混沌理论对交通流时间序列进行相空间重构,利用C-C算法计算时间延迟和嵌入维数,采用Grassberger-Procaccia算法计算吸引子关联维数,通过改进小数据量法计算最大Lyapunov指数来判别交通流时间序列的混沌特性.针对局域自适应预测方法在交通流多步预测中预测器系数无法调节的问题,提出了交通流多步自适应预测方法.通过实测数据计算,结果表明:2,4和5 min三种统计尺度的交通流时间序列均具有混沌特性;改进的小数据量法能够准确地计算出最大Lyapunov指数;构建的交通流多步自适应预测模型能够有效地预测交通流量的变化.为智能交通系统诱导和控制提供了依据. In order to reveal the internal dynamic property of short-term traffic flow, the nonlinear analysis method is used to identify the chaotic property of traffic flow which is the basis for the prediction of the traffic flow time series. Traffic flow time series is reconstructed in phase-space based on chaos theory. The embedding dimension and delay time are first calculated via the C-C method. The correlative dimension of attractor is then calculated with the Grassberger-Procaccia method. The largest Lyapunov exponent of traffic flow set is calculated on the basis of the improved small data set method to verify the presence of the chaos in traffic flow time series. A novel multi-step adaptive prediction method is proposed to solve the problem of adjusting the filter parameters of the chaos local adaptive prediction method during traffic flow multi-step prediction. The traffic flow time series are found to have chaotic properties in different statistical scales of 2, 4, and 5 min and show that the improved small data set method can accurately evaluate the chaotic property for traffic flow time series, and that the multi-step adaptive prediction method is capable of effectively predicting its fluctuation, which provides a useful reference for traffic guidance and control.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第4期51-58,共8页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2012CB723303) 国家自然科学基金青年科学基金(批准号:51308058)资助的课题~~
关键词 交通流量 混沌 最大LYAPUNOV指数 多步自适应预测 traffic flow, chaos, maximum Lyapunov exponent, multi-step adaptive prediction
  • 相关文献

参考文献10

二级参考文献115

  • 1崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 2孙克辉,谈国强,盛利元,张泰山.Lyapunov指数计算算法的设计与实现[J].计算机工程与应用,2004,40(35):12-14. 被引量:14
  • 3崔万照,朱长纯,保文星,刘君华.基于模糊模型支持向量机的混沌时间序列预测[J].物理学报,2005,54(7):3009-3018. 被引量:29
  • 4刘洪,李必强.基于混沌吸引子的时间序列预测[J].系统工程与电子技术,1997,19(2):23-28. 被引量:29
  • 5Low D J, Addison P S. Chaos in a car-following model with a desired headway time [C]//Proceeding of the 30th ISATA Conferenee.Florence:ISATA, 1997:175-182
  • 6Takens F. On the numerical determination of the dimension of an attractor [ M ].Berlin:Spring-Verlag, 1985,1125: 366- 381
  • 7Fraser A M. Swinney H L. Independent coordinates for strange attractors from mutual information [J]. Physical Review A, 1986, 33(2): 1134-1140
  • 8Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase space reconstruction using a geometrical construction [J]. Physical Review A, 1992, 45 (6): 3403-3411
  • 9Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest lyapunov exponents from small data sets [J]. Physica D, 1993, 65:117-134
  • 10Douglas S C, Meng T H-Y. Normalized data nonlinearities for LMS adaptation [J]. IEEE Transactions on Signal Processing, 1994, 42(6): 1352-1365

共引文献295

同被引文献166

引证文献17

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部