期刊文献+

氧化镁纳米多晶的微结构和磁性 被引量:3

Magnetism of MgO nanoparticles
原文传递
导出
摘要 实验发现,宏观晶体是非磁性的氧化镁时,其多晶样品有弱铁磁性.本文用第一性原理电子结构方法研究了氧化镁表面、纳米颗粒和晶界的磁性.计算结果表明:绝缘的氧化镁表面可以是导电的,并且有与之相关的铁磁性;磁性表面的共同特征是在表面上有氧原子富集,包括(111)表面的纯氧原子层,(114)表面的氧原子链;其他高晶面指数表面也会有氧原子富集区域;氧化镁纳米颗粒的磁性出现在高晶面指数表面以及不同晶面交界的棱及其顶角等有氧原子富集的区域,这种由氧原子富集而形成的磁性有巡游特征.氧化镁Σ7[111]和Σ5[001]晶界的计算结果表明:在没有氧原子富集的情况下,多晶样品中晶界的磁性很弱,而在有氧原子富集的情况下,晶界磁性比较强.因此可以推断多晶样品的磁性主要出现在多晶表面、晶粒包围孔隙、微裂纹界面、晶界和其他晶体缺陷等有氧原子富集的区域.这种残余磁性可以通过热处理等结构优化过程而削弱甚至消除. MgO polycrystal is found to be weakly magnetic experimentally, although its single crystal is non magnetic. In this work, the magnetic properties of surfaces of crystal and nano-particles of MgO are studied by the first-principles density functional theory. The obtained results show that there are the oxygen-rich regions in all the magnetic surfaces discussed in this work, especially in the (111) surface with pure oxygen layer and the (114) surface with pure oxygen chains. Other surfaces with high Miller indices generally have the oxygen-rich regions. For MgO nano-particles, the facets with high Miller indices and the edges and vertexes formed by different orientation surfaces are oxygen-rich possibly and have strong magnetism. The itinerant magnetism is indentified for the magnetism on the surfaces of MgO crystal and the surfaces of MgO nano-particles. That the special MgO ∑7[111] grain boundary is not magnetic means that the magnetism of MgO grain boundary is weak if the chemical composition in grain-boundary region is slightly different from that in the crystal. It can be inferred that the magnetism of MgO polycrystal is mainly contributed by the polycrystal surface, the micro-pores, micro-voids and micro-cracks.
作者 范巍 曾雉
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第4期295-304,共10页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2012CB933702) 国家自然科学基金(批准号:11174284) 国家自然科学基金联合基金重点项目(批准号:U1230202)资助的课题~~
关键词 氧化镁 纳米颗粒 表面磁性 第一性原理电子结构计算 magnesium oxide, nanopaticles, surface magnetism, first-principles calculation of electronic structure
  • 相关文献

参考文献3

二级参考文献36

  • 1Julian F. V. Vincent.The Nature of Materials[J].Journal of Bionic Engineering,2005,2(2):93-114. 被引量:2
  • 2李恩玲,杨成军,陈贵灿,王雪雯,马德明.第一性原理对Ga_nP_m小团簇的结构及稳定性的研究[J].物理学报,2005,54(9):4117-4123. 被引量:9
  • 3Lee Y M, Hayakawa J, Ikeda S et al. Appl. Phys. Lett. , 2007,90 : 212507.
  • 4Wang S G, Ward R C C, Du G X et al. submitted and in reviewing, "Temperature Dependence of Giant Tunnel Magnetoresistance in Epitaxial Fe/MgO/Fe (001) Magnetic Tunnel Junctions".
  • 5Zhu Y, Cai J W. Appl. Phys. Lett. , 2005, 87:032504.
  • 6Dai B, Cai J W, Lai W Y et al. Appl. Phys. Lett. , 2005, 87:092506.
  • 7Zeng Z M, Feng J F, Wang Y et al. Phys. Rev. Lett. , 2006, 97 : 106605.
  • 8Wang Y, Lu Z Y, Zhang X G et al. Phys. Rev. Lett. , 2006, 97 : 087210.
  • 9Sun J R, Liu G J, Zhang S Y et al. Appl. Phys. Lett. , 2005, 86:242507.
  • 10Xie Y W, Sun J R, Wang D J et al. Appl. Phys. Lett., 2006, 89:172507.

共引文献21

同被引文献66

  • 1Ito K, Nakazawa T 1988 Japanese Journal of Applied Physics 27 2094.
  • 2Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt: Res. Appl. 21 72.
  • 3Guo QI Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384.
  • 4Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465.
  • 5Chen Q M, Li Z Q, Ni Y, Cheng S Y, Dou X M 2012 Chin. Phys. B 21 038401.
  • 6Strohm A, Eisenmann L, Gebhardt R K, Harding A, SchlStzer T, Abou-Ras D, Schock H W 2005 Thin Solid Film 480-481 162.
  • 7Jiang C -S, Noufi R, AbuShama J A, Ramanathan K, Moutinho H R, Pankow J, AI-Jassim M M 2004 Applied Physics Letters 84 3477.
  • 8Azulay D, Millo O, Balberg I, Schock H W, Visoly-Fisher I, Cahen D 2007 Solar Energy Materials & Sollar Cells 91 85.
  • 9Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603.
  • 10Li J B, Chawla V, Clemens B M 2012 Adv. Mater. 24 720.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部