期刊文献+

基于自适应步长的GLA算法研究

GLA Algorithm based on Self-Adaptive Step Size
原文传递
导出
摘要 GLA具有较强的抗噪声能力,但是其收敛的稳定性和学习速度是一对矛盾。通常为保证收敛的稳定性,需要选取足够小的步长,但过小的步长会导致训练时间过长。结合自适应步长的原理,提出改进型的算法TDBDGLA。实验结果表明,与采用同种强化方案的GLA相比,TDBDGLA取得更低的误分率,并且对于给出的衡量稳定性和学习速度的指标,TDBDGLA比GLA提高了11%以上。 GLA has strong noise-tolerant ability, while its stability of convergence is in contradiction with learning speed. In general, to guarantee the stability of convergence, it requires a step size that is small enough. However, if the step size is too small, it will result in very long training time. The principle of self-adaptive step size is incorporated to propose the improved TDBDGLA algorithm. The experimental results show that compared with GLA using the same reinforcement scheme, TDBDGLA achieves lower classification error rate. In the given metric for measuring stability and learning speed, TDBDGLA improves by more than 11% compared with GLA.
出处 《信息安全与通信保密》 2014年第3期76-79,共4页 Information Security and Communications Privacy
基金 国家自然科学基金资助项目(批准号:61271316 61071152) 国家973计划重大基础研究资助项目(编号:2010CB731403 2010CB731406 2013CB329605) 国家十二五科技支撑计划(编号:2012BAH38 B04) 上海市信息安全综合管理技术研究重点实验室基金
关键词 广义学习自动机 抗噪声 线性分类器 自适应 步长 generalized learning automata noise-tolerant linear classifier self-adaptive step size
  • 相关文献

参考文献12

  • 1THATHACHAR M A L,SASTRY P S. Networks of Learning Automata:Techniques for Online Stochastic Optimization[M].Boston:Kluwer Academic Publishers,2004.8.
  • 2OOMMEN B J. Recent Advances in Learning Automata Systems[A].IEEE,2010.V1-724-V1-735.
  • 3THATHACHAR M A L,SASTRY P S. Varieties of Learning Automata:An Overview[J].IEEE Transactions on Systems Man and Cybernetics,2002,(06):711-722.
  • 4THATHACHAR M A L,SASTRY P S. Learning Optimal Discriminant Functions Through a Cooperative Game of Automata[J].IEEE Transactions on Systems Man and Cybernetics,1987,(01):73-85.
  • 5SASTRY P S,NAGENDRA G D,MANWANI N. A Team of Continuous-Action Learning Automata for NoiseTolerant Learning of Half-Spaces[J].IEEE Transactions on Systems Man and Cybernetics,2010,(01):19-28.
  • 6THATHACHAR M A L,PHANSALKAR V V. Learning the Global Maximum with Parameterized Learning Automata[J].IEEE Transactions on Neural Networks,1995,(02):398-406.
  • 7PHANSALKAR V V,THATHACHAR M A L. Local and Global Optimization Algorithms for Generalized Learning Automata[J].Neural Computation,1995,(05):950-973.
  • 8THATHACHAR M A L,PHANSALKAR V V. Convergence of Teams and Hierarchies of Learning Automata in Connectionist Systems[J].IEEE Transactions on Systems Man and Cybernetics,1995,(11):1459-1469.
  • 9宫韬.最坏情况下的鲁棒优化问题研究[J].通信技术,2013,46(8):144-146. 被引量:1
  • 10吴越,李军,翟军伟.一种水声信道自适应均衡算法研究[J].信息安全与通信保密,2012,10(5):61-62. 被引量:2

二级参考文献24

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部