期刊文献+

最佳PCA稀疏表示方法及在直升机旋翼故障识别中的应用 被引量:1

A global sparse representation scheme based on PCA for fault identification of helicopter rotor.Computer Engineering and Applications
下载PDF
导出
摘要 提出一种基于PCA稀疏表示算法进行直升机旋翼故障识别的方法。首先相应的PCA预处理本身计算复杂度不高且能对样本的降维程度较高,其次根据样本相似性原则,基于PCA的稀疏表示方法不仅能保持样本在处理前后相互距离不变,而且提高了计算效率。采用新的诊断模型对直升机旋翼故障分类识别,并与基于神经网络和基于支持向量机的诊断方法进行比较。结果表明本文方法对旋翼故障具有良好的识别能力。 This paper describes an application of global sparse representation scheme based on PCA to fault identiifcation of helicopter rotor.The corresponding PCA ifrst have not high computational complexity and higher sample dimension reduction degree.According to the similarity principle,the sparse representation scheme based on PCA can only keep samples in mutual distance unchanged before and after processing,and improve the computational efifciency.The improved diagnosis model is employed to identify the rotor faults and compared with the diagnosis methods based on neural network and SVM.The results show that the proposed scheme is effective in diagnosing the faults of helicopter rotor.
作者 裴胜玉 童浪
机构地区 广西财经学院
出处 《电子世界》 2014年第5期94-95,共2页 Electronics World
基金 广西财经学院2013年度校级课时立项资助(编号:2013A016)
关键词 稀疏表示 时间复杂度 神经网络 支持向量机 PCA PCA sparse representation time complexity neural network SVM
  • 相关文献

参考文献7

  • 1Ganguli R.Chopra I,Hass D J.Helicopter Rotor System Fault Detection Using Physics-based Model and Neural Networks[J].AIAA Journal,1998,36(6):1078-1086.
  • 2Reddy R R K,Ganguli R.Structural Damage Detection in a Helicopter Rotor Blade Using Radial basis Funedon Neural Networks[J].Smart Materials and Smactures,2003,12 (2):232-241.
  • 3Pawar P M,Ganguli R.Helicopter Rotor Health MonJtoring-a Review[J].Journal of Aerospace Engineeri ng,2007,221(5):631-647.
  • 4MiUer Nathan A,Kunz Donald L.A Comparison of main Rotor Smoothing Adjustments Using Linear andNeural Network AlgorithmsU].Journal of Sound and Vibration,2008,31 (1):991-1003.
  • 5Wroblewski D,Branhof R W,Cook T.Neural Networks for Smoothing of Helicopter Rotors[C]. American Helicopter Society 57th Annual Forum Proceedings,2001:1587-1594.
  • 6Vapnik V.An Overview of Statistical Learning Theory[J].IEEE Transactions on Neural Networks,1999,10(5):988-998.
  • 7Y.Xu,D.Zhang,J.YangJ.-Y.Yang,A two-phase Test Sample Sparse Representation Method for Use with Face Recognifion[J].IEEE Transactions on Circuits and Systems for Video Technology,2011,21(9):1255-1262.

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部