期刊文献+

酸性镀铜法制备黄铜基超疏水表面 被引量:5

Preparation of superhydrophobic brass surface by acidic copper plating
原文传递
导出
摘要 对黄铜进行酸性镀铜后再采用氟硅烷-乙醇溶液进行化学修饰得到超疏水表面。通过正交试验得到电镀铜的最佳工艺条件为:CuSO_4.5H_2O 0.5 mol/L浓硫酸6.5%(体积分数),电流密度0.12 A/cm^2,温度26℃,极板间距5cm,电镀时间20min。在该工艺下电镀铜再化学修饰后,所得表面静态接触角和滚动角分别为157°和4°,表面分布有大量直径约2.5μm的球状凸起,球状凸起之间分布有柱状凸起和凹坑。初步研究了镀层发白现象与电镀工艺条件和超疏水表面疏水性之间的关系,为电沉积制备合金基底的超疏水表面和黄铜超疏水表面用于工业生产提供一定的理论和技术参考。 Superhydrophobic surface on brass substrate was obtained by acid copper plating followed by chemical modification using fluorosilane-ethanol solution. The optimal process conditions obtained by orthogonal test are as follows: CuSO4'5H20 0,5 mol/L, concentrated sulfuric acid 6.5vo1%, current density 0.12 A/cm2, temperature 26 ℃, distance between anode and cathode 5 cm, and plating time 20 min. After plating under the given conditions and chemical modification, the static contact angle and rolling angle of brass surface are 157° and 4°, respectively. Abundant spherical protuberances with a diameter of about 2.5 pm are distributed on the brass surface, and there are columnar protuberances and recess between different spherical protuberances. The relationship between the whitening phenomenon of coatings and plating conditions and the hydrophobicity of superhydrophobic surface was preliminarily studied, which provides some theoretical and technological reference for the preparation of superhydrophobic alloy surface by electrodeposition, and for the industrial application of superhydrophobic brass surface.
出处 《电镀与涂饰》 CAS CSCD 北大核心 2014年第4期137-141,共5页 Electroplating & Finishing
基金 深圳市科技研发基金项目(ZDSY20120616140826670)
关键词 黄铜 酸性镀铜 超疏水 氟硅烷 化学修饰 brass acidic copper plating superhydrophobicity fluorosilane chemical modification
  • 相关文献

参考文献5

二级参考文献99

  • 1郑黎俊,乌学东,楼增,吴旦.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699. 被引量:58
  • 2江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报,2005,23(2):4-8. 被引量:110
  • 3王庆军,陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程,2005,21(2):6-10. 被引量:37
  • 4李淑芬,王补宣,叶大均.对我国“细微尺度传热学”发展战略的建议[J].中国科学基金,1996,10(2):108-111. 被引量:3
  • 5WANG Shu-tao, LIN Fin, JIANG Lei. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Adv Mater, 2006, 18: 767-770.
  • 6CARBONELL L, RATCHEV P, CALUWAERTS R, et al. Dry oxidation mechanisms of copper in trenches[J]. MicroelectronEng, 2002, 64: 63-71,.
  • 7LAU K K S, BICO J, TEO K B K, et al, Superhydrophobic carbon nanotube forests[J]. Nano Lett, 2003, 3:1701-1705.
  • 8ERBIL H Y, Transformation DEMIREL A L, of a simple AVCI Y, et al. plastic into a superhydrophobie surface[J]. Science, 2003, 299: 1377 -1380.
  • 9WANG R, HASHIMOTO K, FUJISHIMA A, et al. Light-induced amphiphilic surfaces [ J ]. Nature, 1997, 388: 431-432.
  • 10MIWA M, NAKAJIMA A, FUJISHIMA A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces [J]. Langmuir, 2000, 16: 5754-5760.

共引文献185

同被引文献45

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部