摘要
利用上、下解方法讨论了带存放率的两种群周期竞争扩散系统ut- k1 Δu=u(a- bu- cv)vt- k2 Δv=v(d- eu- fv) + h的渐近性态 ,得到了在系数满足一定条件时 ,当 0 <h<a L(f La L- d Mc M)c2M时 ,该系统两种群共存 ,当 h≥ a M(f Ma M- d Lc L)c2L时 ,该系统被存放的种群一致持续生存 ,另一种群则最终灭绝的结果。
The asymptotic behavior of the following two\|species periodic competition system with depositing is considered by using the upper and lower methods of solution: u\-t-k\-1 Δ u=u(a-bu-cv) v\-t-k\-2 Δ v=v(d-eu-fv)+h It is proved that under certain conditions when 0<h<a\-L(f\-La\-L- d \-Mc\-M)c\+2\-M, the two\|species coexist; when h≥a\-M(f\-Ma\-M- d \-Lc\-L)c\+2\-L , the species with depositing is persistent in existeace, whereas the other species is extinct.
出处
《甘肃科学学报》
2000年第4期5-10,共6页
Journal of Gansu Sciences
基金
甘肃省自然科学基金
甘肃省重点学科基金!(ZS991- A2 5 - 0 0 7- Z)
关键词
周期解
渐近性态
存放率
共存
两种群周期竞争扩散系统
periodic solutions
asymptotic behavior
depositing
coexistence
upper and lower methods of solution