期刊文献+

基于改进多尺度乘积LoG算子的仿射不变形状匹配算法 被引量:1

Affine-invariant shape matching algorithm based on modified multi-scale product Laplacian of Gaussian operator
下载PDF
导出
摘要 目标在成像过程中发生的几何变形多数情况下可用仿射变换来描述。据此,提出一种利用角点进行仿射不变形状匹配的算法。首先引入多尺度乘积LoG(MPLoG)算子检测轮廓角点,并根据角点间距自适应地提取轮廓特征点,从而获取形状关键特征;为解决目标的仿射变形问题,采用Grassmann流形Gr(2,n)来表征和度量两形状之间的相似度;最后通过迭代式序列移位匹配算法来克服Grassmann流形对起始点的依赖并完成形状的匹配。对形状数据进行仿真实验的结果表明,所提算法能够有效地实现形状检索和识别,并对噪声有较强的鲁棒性。 Geometric transforms of the object in the imaging process can be represented by affine transform in most situations. Therefore, a method for shape matching using comers was proposed. Firstly, the comer of contour using Multiscale Product Laplacian of Gaussian (MPLoG) operator was detected, and the feature points based on comer interval were adaptively extracted to obtain the key feature of shape. In order to cope with affine transform, the similarity of two shapes on Grassmann manifold Gr( 2, n) were represented and measured. Finally, the iterative sequence shift matching was adopted for overcoming the dependency of Grassmann manifold on the starting point, and achieving shape matching. The proposed algorithm was tested on the database of shapes. The simulation results show that the proposed method can achieve shape recognition and retrieval effectively, and it has strong robustness against noise.
出处 《计算机应用》 CSCD 北大核心 2014年第3期841-845,883,共6页 journal of Computer Applications
关键词 多尺度乘积LoG算子 角点检测 GRASSMANN流形 迭代式序列移位 形状匹配 Multi-scale Product Laplacian of Gaussian (MPLoG) operator corner detection Grassmann manifold iterative sequence shift shape matching
  • 相关文献

参考文献14

  • 1BELONGIE S,MALIK J,PUZICHA J. Shape matching and object recognition using shape contexts[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,(04):509-522.
  • 2ALAJLAN N,RUBE I E,KAMEL M S. Shape retrieval using triangle area representation and dynamic space warping[J].{H}Pattern Recognition,2007,(07):1911-1920.
  • 3ADAMEK T,O'CONNOR N E. A multi-scale representation method for nonrigid shapes with a single closed contour[J].{H}IEEE Transactions on Circuits and Systems for Video Technology,2004,(05):742-753.
  • 4EL RUBE I A,AHMED M,KAMEL M. Coarse-to-fine multiscale affine invariant shape matching and classification[A].Washington,DC:IEEE Computer Society,2004.163-166.
  • 5LI W J,LEE T. Hopfield neural networks for affine invariant matching[J].{H}IEEE Transactions on Neural Networks,2001,(06):1400-1410.
  • 6刘云鹏,李广伟,史泽林.基于Grassmann流形的仿射不变形状识别[J].自动化学报,2012,38(2):248-258. 被引量:6
  • 7杨丹,王洪星,张小洪,闫卫杰.轮廓曲线的LoG变换及图像共变区域的检测[J].自动化学报,2010,36(6):817-822. 被引量:3
  • 8林晓泽,周絮语,李相军.基于轮廓的旋转和尺度不变区域的检测[J].计算机应用研究,2012,29(5):1951-1953. 被引量:2
  • 9EDELMAN A,ARIAS T A,SMITH S T. The geometry of algorithms with orthogonality constraints[J].{H}SIAM Journal on Matrix Analysis and Applications,1999,(02):303-353.
  • 10ZHENG L,TSE D N C. Communication on the Grassmann manifold:a geometric approach to the noncoherent multiple-antenna channel[J].{H}IEEE Transactions on Information Theory,2002,(02):359-383.

二级参考文献67

  • 1陈孝春,叶懋冬,倪臣敏.一种形状识别的方法[J].模式识别与人工智能,2006,19(6):758-763. 被引量:7
  • 2Mokhtarian F, Suomela R. Robust image corner detection through curvature scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(12): 1376-1381.
  • 3Tuytelaars T, Mikolajczyk K. Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision, 2008, 3(3): 177-280.
  • 4Mikolajczyk K, Schmid C. A performance evaluation of local descriptors, IEEE, Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 5Colletto F, Marcon M, Sarti A, Tubaro S. A robust method for the estimation of reliable wide baseline correspondences. In: Proceedings of IEEE International Conference on Image Processing, Atlanta, USA: IEEE, 2006. 1041-1044.
  • 6Liu J, Chen Z Y, Guo R F. A mosaic method for aerial image sequence by R/C model. In: Proceedings of the International Conference on Computer Science and Software Engineering. Wuhan, China: IEEE, 2008. 58-61.
  • 7Yang Z L, Guo B L. Image mosaic based on SIFT. In: Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Harbin, China: IEEE, 2008. 1422-1425.
  • 8Suga A, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cuts. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4.
  • 9Otoom A F, Gunes H, Piccardi M. Feature extraction techniques for abandoned object classification in video surveillance. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, USA: IEEE, 2008. 1368-1371.
  • 10Song X Y, Lee H K, Cho H. A sensor fusion method for mobile robot navigation. In: Proceedings of SICE-ICASE International Joint Conference. Busan, South Korea: IEEE, 2006. 5310-5316.

共引文献8

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部