期刊文献+

电子通过量子点输运的微分电导 被引量:1

Differential conductance of electrons passing through a quantum dot
下载PDF
导出
摘要 采用格林函数方法,计算了电子通过量子点输运的微分电导,计算结果显示电导与偏压关系曲线中出现一个狭窄的电导尖峰和一个展宽的电导峰,与实验观测一致,本文分析了两个电导峰出现的物理原因. The different conductance that electrons pass through a quantum dot is calculated by employing Green's functions. The calculation results reveal that a narrow conductance peak and a broad conductance peak appear in the conductance-voltage curve, which have a good agreement with the observations. We also analyze the causes of two conductance peaks existing.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2014年第1期128-132,共5页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(11164010)
关键词 量子点 输运 微分电导 Quantum dot Transport Differential conductance
  • 相关文献

参考文献13

  • 1Nielsen M A. Quantum computation and quantum information[M].{H}Cambridge:Cambridge University Press,2000.12.
  • 2Gregory S. Experimental-observation of scattering of tunneling electrons by a single magnetic-moment[J].{H}Physical Review Letters,1992.2070.
  • 3Appelbaum J. S-d exchange model of zero-bias tunneling anomalies[J].{H}Physical Review Letters,1966.91.
  • 4Wyatt A F G. Anomalous densities of states in normal tantalum + niobium[J].{H}Physical Review Letters,1964.401.
  • 5Ralph D C,Buhrman R A. Kondo-assisted and resonant-tunneling via a single charge trap-a realization of the Anderson model out of equilibrium[J].{H}Physical Review Letters,1994.3401.
  • 6Luo H G,Ying J J. Wang S J Equation of motion approach to the solution of the Anderson model[J].{H}Physical Review B:Condensed Matter,1999.9710.
  • 7Anderson P W. Localized Magnetic States in Metals[J].{H}Physical Review,1961.41.
  • 8Zubarev D N. Double-time green functions in statistical physics[J].{H}USPEKHI FIZICHESKIKH NAUK,1960.71.
  • 9Lacroix C. Density of states for the asymmetric Anderson model[J].{H}Journal of Applied Physics,1982.2131.
  • 10Meir Y,Wingreen N S. Landauer formula for the current through an interacting electron region[J].{H}Physical Review Letters,1992.2512.

同被引文献17

  • 1Hewson A C. The Kondo problem to heavy fermions [ M ]. Cambridge: Cambridge University Press, 1993: 100.
  • 2. Gregory S. Experimental - observation of scattering of tunneling electrons by a single magnetic -moment [J]. Phys. Rev. Lett., 1992, 68: 2070.
  • 3Appelbaum J. S - d exchange model of zero - bias tun- neling anomalies [J]. Phys. Rev. Lett., 1966, 17: 91.
  • 4Wyatt A F G. Anomalous densities of states in normal tantalum and niobium [ J ]. Phys. Rev. Lett. , 1964, 13 : 401.
  • 5Ralph D C, Buhrman R A. Kondo- assisted and reso-nant - tunneling via a single charge trap - a realization of the Anderson model out of equilibrium [ J ]. Phys. Rev. Lett. , 1994, 72: 3401.
  • 6Chen M L, Wang S J. Decoherence of Kondo siuglet caused by phase - sensitive detection of Aharonov - Bohm interferometer [J]. Mod. Phys. Lett. B, 2014, 28 : 1450084.
  • 7Chen M L, Chen Z Q. Decoherenee of the Kondo sin- glet caused by Fano resonance [J]. J. At. Mol. Sci., 2014, 5: 156.
  • 8Aleiner I L, Wingreen N S, Meir Y. Dephasing in tun- neling through a quantum dot: The "which path?" in- terferometer [J]. Phys. Rev. Lett. , 1992, 79: 3740.
  • 9Kaminski A, Nazarov Y V, Glazman L I. Suppression of the Kondo effect in a quantum dot by external irradi- ation [J]. Phys. Rev. Lett. , 1999, 83: 384.
  • 10Monreal R C, Flores F. Kondo resonance decoherence caused by an external potential [ J ]. Phys. Rev. B, 2005, 72: 195105.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部