期刊文献+

LDPC码改进的量化自适应偏移最小和算法 被引量:2

Improved quantized adaptive-offset min-sum algorithm for low-density parity-check codes
下载PDF
导出
摘要 为减小低密度奇偶校验(LDPC)码的量化译码算法的实现复杂度,提出了一种改进的4比特量化自适应偏移最小和(AOMS)译码算法。改进的AOMS译码算法中引入了预设的固定迭代次数作为启动偏移量修正因子自适应选择的条件;设计了一种4比特非均匀数据量化方案,保证量化数据的取值范围既能较好地满足外信息的动态范围,又能简单实现优化的量化偏移量修正因子。仿真结果表明,与浮点译码算法相比较,改进的量化AOMS译码算法的译码性能损失较小。 In order to reduce the implementation complexity of the quantized decoding algorithm for the Low-Density Parity-Check(LDPC)codes, an improved 4-bit quantized Adaptive-Offset Min-Sum(AOMS)algorithm is designed. The improved AOMS algorithm is obtained by introducing a pre-determined iteration number as the condition of adaptive selecting the offset factors. Furthermore, a 4-bit nonuniform quantization scheme is designed, which can guarantee the dynamic range of the extrinsic information and easily utilize the optimized quantized offset factors. The simulation results show that, compared with the floating-point decoding algorithms, the performance degradation of the improved 4-bit nonuniform quantized AOMS algorithm can be neglected.
出处 《计算机工程与应用》 CSCD 2014年第4期203-206,230,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61101114) 天津市自然科学基金(No.11JCYBJC00400) 中兴通讯产学研项目 天津大学自主创新基金
关键词 信道编码理论 最小和译码算法 量化 channel coding theory Min-Sum(MS)algorithm quantization
  • 相关文献

参考文献4

二级参考文献40

  • 1殷柳国,陈为刚,陆建华,吴佑寿.基于低密度奇偶校验编码的自适应调制方案[J].清华大学学报(自然科学版),2004,44(6):833-836. 被引量:1
  • 2Luby M G, Mitzenmacher M, hokrollahi M A, et al. Improved low-density parity-check codes using irregular graphs[J]. IEEE Trans Inform Theory, 2001, 47(2): 585 - 598.
  • 3Eroz M, Sun F-W, Lee L-N. DVB-S2 low density parity check codes with near Shannon limit performance[J]. Int J Satell Commun Network, 2004, 22(3): 269-279.
  • 4Richardson T J. Error floors of LDPC codes [C]//Proe 41st Annual Allerton Conf on Communications, Control and Computing. Allerton, Illinois, USA: IEEE Press, 2003: 1426 - 1435.
  • 5DI Changyan, Proietti D, Telatar E, et al. Finite length analysis of low-density parity-check codes on the binary erasure channel [J]. IEEE Trans Inform Theory, 48(6): 1570- 1579.
  • 6TIAN Tao, Jones C, Villasenor J D, et al. Construction of irregular LDPC codes with low error floors [C]//Proc Int Conf Commun. Anchorage, Alaska, USA: IEEE Press, 2003: 3125-3129.
  • 7CHEN Jinghu, Fossorier M P C. Density evolution for two improved BP-based decoding algorithms of LDPC codes [J]. IEEE Communications Letters, 2002, 6(5): 208- 210.
  • 8ZHAO Jianguang, Zarkeshvari F, Banihashemi A H. On implementation of rain-sum algorithm and its modifications for decoding low-density parity-check (LDPC) codes [J]. IEEE Trans Commun, 2005, 53(4): 549 -554.
  • 9MacKay D J C, Wilson S T, Matthew C D. Comparison of constructions of irregular Gallager codes [J]. IEEE Trans Commun, 1999, 47(10): 1449 - 1454.
  • 10LI Kai, Motani M. On the distribution of residual errors of Turbo codes and its application to concatenated codes [C]//Proc IEEE VTC. Vancouver, Canada.. IEEE Press, 2002:985 - 989.

共引文献8

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部