期刊文献+

基于最大信息理论和共轭梯度寻优的ICA算法

Independent component analysis algorithm based on maximum information theory and conjugate gradient searching algorithm
下载PDF
导出
摘要 独立分量分析是一种将观测向量分解为若干个独立统计的分量的一种统计学方法。提出了一种新的独立分量分析方法,该方法在最大信息理论的基础上引入目标函数,并利用共轭梯度搜索算法替代自然梯度算法,推导出用于训练转换矩阵的学习方程。运用核密度函数估算方法自适应地估算学习方程中包含的评价函数项。仿真结果表明,提出的基于独立分量分析的共轭梯度算法在求解盲源分离问题中切实有效。 Independent component analysis is a statistical approach for representing an observed multi-dimensional sensor vector into several components which are as mutual independent as possible. In this paper, a new independent component analysis method is proposed. The presented method exploits the conjugate gradient searching algorithm rather than the nature gradient algorithm to derive the learning equations for training the transforming matrix. The objective function is obtained based on the theory of maximum information. In addition, the score functions included in the learning equation are estimated adaptively by a kernel density estimation method rather than replaced by choosing certain non-linear functions empirically. Several simulation results have shown the effective behavior of the proposed conjugate gradient based inde-pendent component analysis method with the application in the blind source separation problem.
出处 《计算机工程与应用》 CSCD 2014年第4期219-222,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61071001) 安徽省教育厅自然科学基金资助项目(No.KJ2008A010) 安徽省教育厅自然科学重点科研项目(No.2006KJ017A)
关键词 独立分量分析 共轭梯度 最大信息熵 目标函数 independent component analysis conjugate gradient maximum information entropy objective function
  • 相关文献

参考文献4

二级参考文献29

  • 1何为伟,肖俊,楼建东,王映民.基于高斯矩的NoisyICA研究[J].微计算机信息,2005,21(5):212-213. 被引量:3
  • 2张云,周剑利,郭建波,郝志华.时频分析和盲源分离在发电机转子系统故障诊断中的应用[J].微计算机信息,2005,21(10S):140-141. 被引量:10
  • 3Comon P. Independent Component Analysis-a New Concept? [J]. Signal Processing , 1994,36: 287- 314.
  • 4Bell A J, Sejnowski T J. An Information-Maximisation Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation, 1995, 7(6): 10004-1034.
  • 5Hyvarinen A, Oja E. A Fast Fixed-Point Algorithm for Independent Component Analysis[J]. Neural Computation, 1997,9(7) : 1483- 1492.
  • 6Amari S L, Cichocki A, Yang H. A New Learnig Algorithm for Blind Source Separation[J]. Advances in Neural Information Processing Systems, 1996, 8:757 - 763.
  • 7HAN Jiye, L IU Guanghui, YIN Hongxia. Convergence Properties of Conjugate Gradient Methods with Strong Wolfe Line Search[J]. Syst Sci Math Sci, 2000, 11(2) : 112- 116.
  • 8Hyvarinen A. Survey on Independent Component Analysis[J]. Neural Computing Surveys,2001,2:94- 128.
  • 9Fu Z, Dowling E M. Conjugate Gradient Eigenstructure Tracking for Adaptive Spectral Estimation[J]. IEEE Trans. Signal Processing, 1995,43.512 - 516.
  • 10P.COMMON,Independent component analysis,A new concept?[J].Signal Processing, 1994,36(3), 287-314.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部