期刊文献+

模糊辨识在隧道纵向式通风控制中的应用 被引量:4

Application of fuzzy identification to road tunnel longitudinal ventilation control
下载PDF
导出
摘要 纵向式通风是利用射流风机的推力将新鲜空气从隧道一端送入,使污染物从另一端排出,以此保证隧道内的环境质量。但由此产生的能耗使得隧道运营成本巨大,所以需要一种合适的控制策略来控制射流风机的开启台数,使得在隧道内污染物浓度不超过规定值的前提下,开启的风机数量最少,从而达到节能的目的。将模糊辨识应用到隧道通风控制中,基于模糊C均值聚类和递推最小二乘法的原理,采用T-S模型模糊辨识方法对隧道通风系统进行了辨识;采用已辨识系统来预测隧道下一采样时刻的污染物浓度;优化开启的风机台数并将其作为控制量。仿真结果表明了该方法的有效性。 The longitudinal ventilation is to use the thrust of jet fans to bring the fresh air to the road tunnel. It can ensure the environmental quality in the tunnel. However, its energy consumption makes the cost of tunnel operation unacceptably. So it needs to adopt a proper control strategy to control the switch of jet fans to decrease the concentration of pollutant below the required level and to minimize electrical power consumption for cost-effective simultaneously. In this research, a fuzzy identification control algorithm is applied in the ventilation control. A fuzzy identification based on T-S model is used to identify the road tunnel ventilation system, which includes fuzzy c-means clustering algorithm for identifying the antecedent parameters and recursive least square method used to identify its consequent part. The pollutant concentration in the next sampling is predicted by the identified system. The minimal of fans should be calculated.The simulation results demonstrate the effectiveness of the proposed control methods.
出处 《计算机工程与应用》 CSCD 2014年第4期245-249,270,共6页 Computer Engineering and Applications
基金 湖南省交通运输厅科技进步与创新计划项目(No.201007)
关键词 隧道通风系统 模式辨识 控制策略 节能 tunnel ventilation system pattern identification control strategy energy saving
  • 相关文献

参考文献7

二级参考文献25

  • 1张宜华.精通MATLAB5[M].北京:清华大学出版社,1999..
  • 2(美)T.J.Chung.流体动力学的有限元分析[M].北京:水利电力出版社,1986..
  • 3(联邦德国)W.Koffang Kinzelbach 杨汝均 等.水环境数学模型[M].北京:中国建筑工业出版社,1987..
  • 4Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1985, 15 ( 1 ) : 116-132.
  • 5XU R, Donald C Wunsch. Survey of clustering algorithms [ J ]. IEEE Transactions on Neural Networks, 2005, 16 (3) :645-678.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[ M ]. New York: Plenum, 1981.
  • 7CHEN J Q, XI Y G, ZHANG Z J. A clustering algorithm for fuzzy model identification[J]. Fuzzy Sets and Systems, 1998, 98 (3) : 319-329.
  • 8Frank Hoppner, Frank Klawonn. Improved fuzzy partitions for fuzzy regression models [ J ]. International Journal of Approximate Reasoning, 2003, 32 ( 2 ) :85-102.
  • 9Box G E P, Jenkins G M. Timer Series Analysis, Forecasting and Control[ M]. San Franeisio, CA: Holden Day, 1970.
  • 10Sugeno M, Yasukawa T. A fuzzy-logic-based approach to qualitative modeling[ J]. IEEE Transactions on Fuzzy Systems, 1993, 1(1) :7-31.

共引文献92

同被引文献29

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部