期刊文献+

环氧化物法制备锑掺杂氧化锡气凝胶 被引量:1

Antimony-Doped Tin Oxide Aerogel Based on Epoxide Additional Method
下载PDF
导出
摘要 以无机金属盐为前驱体,采用环氧丙烷添加法结合CO2超临界流体干燥和热处理工艺,制备了不同锑掺杂浓度的二氧化锡(ATO)气凝胶.所得气凝胶为深蓝色块体,平均密度约为600 mg?cm-3,锑掺杂浓度在5%到20%(x)之间.电子显微镜图片显示ATO气凝胶的骨架由粒径约为数十纳米的颗粒堆积而成,而这些颗粒又由数纳米的初级球形颗粒构成.X射线衍射谱表明,样品的主要晶相为SnO2四方相金红石结构,锑的掺杂仅引起微小的晶格畸变.X射线光电子谱显示锡元素以+4价态存在,而锑则具有+3和+5的混合价态.四探针电阻率测试仪的结果表明,ATO气凝胶的电阻率在2.7-40Ω?cm之间变化,其中在锑掺杂浓度(x)为12%时具有最低电阻率. Antimony-doped tin oxide (ATO) aerogels were prepared from inorganic salts via epoxide additional method, CO2 supercritical fluid drying and thermal treatment. ATO samples were dark blue monoliths with average density of about 600 mg?cm-3 and Sb concentrations of 5%-20%(x). Electron microscopy showed that the skeleton of the ATO aerogels consisted of particles of size of dozens of nanometers, which further consisted of primary particles of size about several nanometers. X-ray diffraction spectra showed that the main crystal structure within the ATO aerogels was tetragonal tin dioxide, while Sb doping only resulted in minor lattice distortion. X-ray photoelectron spectroscopy indicated that the valence state of tin was+4, while antimony was mixed with+3 and+5 valences. Four-point probe resistivity analysis exhibited that the electrical resistivity of the ATO aerogels changed from 2.7 to 40Ω?cm, among which the aerogel with 12%Sb had the lowest resistivity.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第3期500-507,共8页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51102184 51172163) 国家高技术研究发展计划(2013AA031801) 国家科技支撑计划(2013BAJ01B01) 上海市科委纳米技术专项项目(12nm0503001) 上海航天科技创新基金项目(SAST201254 SAST201321)资助~~
关键词 锑掺杂二氧化锡 气凝胶 环氧丙烷 超临界干燥 电阻率 Antimony-doped tin oxide Aerogel Propylene oxide Supercritical drying Electrical resistivity
  • 相关文献

参考文献4

二级参考文献51

  • 1任洪波,张林,杜爱明.块状氧化铁气凝胶制备初步研究[J].原子能科学技术,2005,39(6):513-516. 被引量:7
  • 2庞颖聪,甘礼华,郝志显,徐子颉,陈龙武.TiO_2/SiO_2气凝胶微球的制备及其表征[J].物理化学学报,2005,21(12):1363-1367. 被引量:9
  • 3田娟,郑丹,张熙贵,张宝宏,夏保佳,杨辉.Pt纳米粒子修饰的多孔硅电极的制备及其电催化性能[J].物理化学学报,2007,23(1):68-72. 被引量:5
  • 4Qu, Y.; Liao, L.; Li, Y.; Zhang, H.; Huang, Y.; Duan, X. Nano Lett. 2009, 9, 4539.
  • 5Schechter, I.; Ben-Chorin, M.; Kux, A. Anal. Chem. 1995, 67, 3727.
  • 6Rong, J.; Masarapu, C.; Ni, J.; Zhang, Z.; Wei, B. A CS Nano 2010, 4, 4683.
  • 7Park, J. H.; Gu, L.; Maltzahn, G. V.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Nat. Mater. 2009, 8, 331.
  • 8徐东升 郭国霖 桂琳琳 张伯蕊 秦国刚.物理化学学报,:577-577.
  • 9Bao, Z.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, E D Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z.; Abernathy, H. W., III; Summers, C. J.; Liu, M.; Sandhage, K. H. Nature 2007, 446, 172.
  • 10Richman, E. K.; Kang, C. B.; Brezesinski, T.; Tolbert, S. H. Nano Lett. 2008, 8, 3075.

共引文献53

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部