期刊文献+

紊流循环法合成超细磷酸锂及表征 被引量:6

Turbulent flow cycle synthesis and characterization of super-fine lithium phosphate
下载PDF
导出
摘要 采用共沉淀法在紊流循环方式下制备超细磷酸锂的一种新工艺,探索了氢氧化锂和磷酸在紊流循环釜中制备超细磷酸锂的反应条件,用X射线粉末衍射、激光粒度仪、扫描电镜、比表面及孔隙分析仪及热分析仪对产物的晶体结构、粒度分布、外观形貌、比表面积以及热稳定性进行了表征。结果表明该方法制得的磷酸锂热稳定性好,粒度分布窄(D50=3.25?m),比表面积(BET)为13.38 m2·g?1,为一种分散均匀的超细粉体材料,可望成为一种高活性的锂离子电池正极材料原材料或电解质添加剂。 A new technology is proposed for the preparation of lithium phosphate by the co-precipitation method in a turbulent flow cycle equipment. The reaction conditions of lithium hydroxide and phosphoric acid in turbulent flow circulation kettle for the preparation of super-fine lithium phosphate were investigated. X-Ray powder diffraction (XRD), laser granularity instrument, scanning electron microscopy (SEM), specific surface and porosity analyzer and thermal analyzer were used to characterize the crystal structure, particle size distribution, morphology, specific surface area and thermal stability of the products. The lithium phosphate prepared by this method had good thermal stability, a narrow particle size distribution ofD50=3.25 ktm, and a specific BET surface of 13.38 mE ~ g-1. As a uniformly dispersed super-fine powder material, the lithium phosphate is expected to be a highly active raw material of cathode materials for lithium ion battery or an additive for lithium ion battery electrolyte.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第3期1099-1103,共5页 CIESC Journal
基金 国家磷资源开发利用工程技术研究中心开放基金项目(2012-Z001)~~
关键词 超细 磷酸锂 紊流循环 表征 super-fine lithium phosphate turbulent flow cycle characterization
  • 相关文献

参考文献36

二级参考文献265

共引文献185

同被引文献80

  • 1马卫华,韩巧凤,陆路德,杨绪杰,汪信.磷酸锂催化剂上环氧丙烷异构化制烯丙醇的研究[J].工业催化,2005,13(4):40-43. 被引量:6
  • 2马卫华,陆路德,杨绪杰,汪信.环氧丙烷催化异构化及其动力学研究[J].化学反应工程与工艺,2005,21(5):397-401. 被引量:4
  • 3侯庆烈,顾建飞.荧光级磷酸锂的制备工艺研究[J].无机盐工业,2007,39(3):47-49. 被引量:4
  • 4Charles K, Alan M, Floyd M, et al. The Crystal Structure of Twinned Low-Temperature Lithium Phosphate [ J ]. Inorg Chem, 1967, 6(1) : 119-125.
  • 5Du Yaojun A, Holzwarth NA W. Mechanisms ofLi+ Diffusion in Crystalline V- and I3-Li3PO4 Electrolytes from First Principles [ J]. Phys Rev B: Condens Matter, 2007, 76 (17) : 174302 - 174316.
  • 6Liu H C, Yen S K. Electrolytic Li3PO4 Coating on Pt[J]. J Power Sources, 2006, 159( 1 ) : 245 -248,.
  • 7Zhao Shixi, Ding Hao, Wang Yanchao, et al. Improving Rate Performance of LiFePO4 Cathode Materials by Hybrid Coating of Nano-Li3PO4 and Carbon[J]. J Alloys Compd, 2013, 566 : 206 - 211.
  • 8Chaehwan J, Ho-Gun S, DuckRye C, et al. Fabrication of the Planar-Type COz Gas Sensor Using an Evaporated Li3PO4 Film and Its Sensing Characteristics [ J ]. Met Mater lnt, 2009, 15 (1): 101-105.
  • 9Zhang Weixin, Chen Lingling, Yang Zeheng, et al. An Optical Humidity Sensor Based on Li3PO4 Hollow Nanospheres [J]. SensActuators, B, 2011, 155(1): 226-231.
  • 10Marzouk M A, E1Batal H A, Abdel Ghany A M, et al. Ultra- violet, Visible, ESR, and Infrared Spectroscopic Studies of CeO2-Doped Lithium Phosphate Glasses and Effect of Gamma Irradiation[J]. J Mol Struct, 2011, 997(1/3) : 94 - 102.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部