摘要
目前热轧重轨表面缺陷检测速度慢、精度低。为此,提出了一种基于机器视觉的热轧重轨表面缺陷在线检测系统。分析了过暗过曝区域交叠融合法与图像像素线互相关校验法两种方法提取特征缺陷等关键技术,并对模糊脉冲神经网络的表面缺陷分类效果进行了研究。实际应用证明,采用上述机器视觉的检测关键技术对热轧重轨表面进行缺陷检测识别,较大提高了检测速度和精度,且检测正确率在90%以上。
In currently hot roiling heavy rail surface faults detecting, speed is slow and its precision is low. So a suit of surface defect detection system for hot rolling heavy rail based on the machine vision is produced. Too dark and sun regional overlapping fusion method and image correlation between pixel hnes algorithm is analysised, and a fuzzy spiking neural network used to make a classification for the characteristics of low SVM training algorithm is researched. Using above key machine vision technology for detection of hot heavy rail surface defects identification, the speed and accuracy of online testing can be greatly improved, and the detection correction rate is over than 90%.
出处
《计量学报》
CSCD
北大核心
2014年第2期139-142,共4页
Acta Metrologica Sinica
基金
国家自然科学基金委员会与中国工程物理研究院联合基金资助(10976034)
关键词
计量学
机器视觉
缺陷识别
热轧重轨
检测精度
Metrology
Machine vision
Fault recognition
Hot rolling heavy rail
Detecting accuracy