摘要
考虑了一类与Caffarelli-Kohn-Nirenberg不等式有关的奇异椭圆型方程(?)利用Ljusternik-Schnirelaman理论及一个Pohozaev型恒等式,证明了上述方程变号解的存在性及非存在性.
We consider the following singular elliptic equation -div(│x│-2a△u)-μμ/│x│^2bp=│u│^p-2/│x│^bp+λu/│x│dD which involves the Caffarelli-Kohn-Nirenberg inequalities. By virtue of the Ljusternik- Schnirelaman theory and a Pohozaev-type identity, we obtain the existence and nonex istence results of sing-changing solutions for the above problem.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2014年第2期281-294,共14页
Acta Mathematica Sinica:Chinese Series
基金
贵州省科学技术基金资助项目(黔科合J字LKS[2013]03号)
关键词
变号解
解的存在性及非存在性
奇异性
sign-changing solution
existence and nonexistence of solutions
singularity