期刊文献+

含刚性椭圆夹杂的弹性平面奇异解 被引量:1

SINGULAR SOLUTION TO THE ELASTIC PROBLEMS ON AN INFINITE PLAN WITH AN ELLIPTICAL RIGID INCLUSION
下载PDF
导出
摘要 运用复变函数方法,求解了含刚性椭圆夹杂的无限弹性平面在任意位置作用集中力和集中力偶的问题,导出了界面应力公式,绘出了应力分布曲线. Applying the complex variable technique, the problem of an infinite elastic plan containing elliptical rigid inclusion under concentrated loads is dealt with. An interface stress formula and its distribution curves are given.
出处 《力学与实践》 CSCD 北大核心 2000年第5期39-41,44,共4页 Mechanics in Engineering
关键词 椭圆夹杂 集中荷载 界面应力 弹性平面 奇异解 elliptical inclusion, concentrated loads, inteface stress
  • 相关文献

参考文献6

  • 1蒋持平.关于嵌入了不同材料的平面问题[J].湖南大学学报,1986,13(1):83-89.
  • 2刘又文 蒋持平.在集中力与集中力偶作用下不同弹性材料圆形界面裂纹问题[J].应用数学和力学,1987,3(3):267-276.
  • 3刘又文,应用数学和力学,1987年,3卷,3期,267页
  • 4蒋持平,湖南大学学报,1986年,13卷,1期,83页
  • 5樊大钧,数学弹性力学,1983年
  • 6赵惠元(译),数学弹性力学的几个基本问题,1965年

同被引文献12

  • 1牛鑫瑞,余寿文,冯西桥.含圆形夹杂两相材料界面变形与损伤特性的数值模拟[J].机械强度,2005,27(5):681-686. 被引量:6
  • 2郭磊,聂国华,Chan Cheong-ki.横观各向同性介质中椭圆夹杂受非弹性剪切变形引起的弹性场的确定[J].力学季刊,2005,26(4):599-603. 被引量:1
  • 3RU C Q. Analytic solution for Eshelby's problem of an inclusion of arbitrary shape in a plane or half-plane [J]. ASME J Appl Mech, 1999,66 : 315-322.
  • 4WANG X, SHEN Y P. Two circular inclusions with inhomogeneous interfaces interacting with a circular Eshelby inclusion in anti-plane shear[JJ. Acta Mechanica, 2002,158 : 67-84.
  • 5ZOU Z, LI S. Stresses in an infinite medium with two similar circular cylindrical inclusions [J]. Acta Mechanica, 2002,156 : 93-108.
  • 6HORII H, NASSER N. Elastic fields of interacting inhomogeneities[J]. Int J Solids Structures, 1985,21(7):731-745.
  • 7NODA N A, MORIYAMA Y. Stress concentration of an ellipsoidal inclusion of revolution in a semi-infinite body under biaxial tension[J]. Arch Appl Mech, 2004,74:29-44.
  • 8YAO Z H, KONG F Z, WANG P B. Simulation of 2D elastic solids with randomly distributed inclusions by boundary element method[A]. Proceeding of Fifth World Congress on Computational Mechanics [C]. Vienna, Austria: July 7-12, 2002.
  • 9LEE KY, KWAK S G. Determination of stress intensity factors for bimaterial interface stationary rigid line inclusions by boundary element method[J]. Int J Fract, 2002,113 : 285-294.
  • 10DONG C Y, LEE K Y. Stress analysis of an infinite anisotropic elastic medium containing inclusions using the boundary point method[J]. Eng Anal Bound Elem, 2004,28:1293-1302.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部