期刊文献+

反应失控条件下过氧化二叔丁基-甲苯体系的安全泄放研究 被引量:2

Vent sizing of DTBP-toluene runaway reactions based on Phi-TEC Ⅱ calorimeter test
下载PDF
导出
摘要 安全泄放是在失控条件下降低反应体系风险最为经济有效的技术措施。为了研究泄放口的设计,利用高性能绝热量热仪PhiTEC II对质量分数20%的过氧化二叔丁基(DTBP)-甲苯(C7H8)体系进行了测试,得到热惯量1.06条件下温升速率、压升速率随温度变化的数据。结果表明:该DTBP体系的起始分解温度为148℃,其反应体系属蒸汽和气体共同作用的混合体系;采用Leung方法和OMEGA方法对该体系的安全泄放量和泄放装置的泄放能力进行了计算,求得当泄放压力为0.25 MPa时的泄放面积为0.001 4 m2;低热惯量的绝热量热仪Phi-TEC II可以为失控反应的压力泄放设计提供基础数据,有利于提高安全泄放设计的可靠性。 The paper is to take it as its main objective to build up an emergency relief system to prevent over-pressurization of the reactor and associated equipment. Therefore, in order to design the pressure relief system sizing, we have carried out a research on a 20% di-tert- butyl peroxide (Toluene as solvent) based on Phi- TEC II calorime- ter, which is a bench-scale experimental apparatus, data of tempera- ture rising rate and pressure rising rate various with the temperature with thermal inertia 1.06. By means of the 110 mL thin-walled test cells, the thermal inertia could be made much lower so as to be made close to the value of a large-scale plant, which implies that the data could be directly used in the industrial production process. The re- suits of our study have shown that the onset temperature of the reac- tive system tends to be around 148 ~C, with its maximum temperature rising rate being 41.5 ~C/min and the maximum pressure rising rate being 2.86 MPa/min. According to the relationship between the tem- perature and the pressure, the reactive system can be identified as a hybrid system, for the pressure varies both with the evolution of the gas and the increase of the vapor pressure with the increase of tem- perature. It is just based on the calorimetric data of runaway reaction that it would be possible for us to find that the relief set pressure is 0.25 MPa and the maximum accumulated pressure is 0.88 MPa, so that we can work out the required relief rate by Leung's method, the mass flow capacity and the average two-dimensional flowing capacity per cross-section unit area of the vent-line by OMEGA method re- spectively. Thus, we can determine the required relief area 0.001 4 m2, that is, the vent area for an ideal nozzle, with no interference of overpressure above the set value. Thus, we can prove that the Phi - TEC II calorimeter can be used to supply the basic runaway chemical reaction data and in turn provide technical supports for the emergency relief system, which is helpful to improve the reliability of the safety relief design.
出处 《安全与环境学报》 CAS CSCD 北大核心 2014年第1期20-24,共5页 Journal of Safety and Environment
关键词 安全工程 反应失控 安全泄放 泄放面积 过氧化二叔丁基-甲苯体系 高性能绝热量热仪 safety engineering runaway reaction safety relief re-lief area DTBP in toluene Phi - TEC II
  • 相关文献

参考文献3

二级参考文献25

  • 1杜忠选,林文胜,顾安忠,辜敏.竖直圆管内超临界甲烷冷却换热数值模拟[J].化工学报,2009,60(S1):63-67. 被引量:13
  • 2岳伟挺,张宏建.基于空隙率的油气两相流流量测量的研究[J].高校化学工程学报,2005,19(3):303-308. 被引量:10
  • 3王利明,王淑兰,丁信伟,朱永江.两相流模型在泄放面积计算中的应用[J].石油化工设备,2005,34(3):47-50. 被引量:7
  • 4刘秀玉,蒋军成.间歇反应器的热参数敏感性及其临界判据(Ⅰ)[J].化学反应工程与工艺,2007,23(1):48-54. 被引量:6
  • 5ZHOU Jian-dong(周建东).Emergency Relief of Runaway Reaction(化学反应失控紧急泄放研究)[D].Dalian(大连):Dalian University of Technology(大连理工大学),2000.
  • 6Melhem G A.Advanced ERS design using computer simulation[C] // International Symposium on Runaway Reaction and Pressure Relief Design.New York:AIChE,1995:502-566.
  • 7Etchells J,Wilday J.Workbook for Chemical Reactor Relief System Sizing[M].London (United Kingdom):HSE,1998.
  • 8Leung J C.Simplified vent sizing methods incorporating two-phase flow[C]// International Symposium on Runaway Reactions and Pressure Relief Design.New York:AIChE,1995:200-236.
  • 9Fauske H K.Flashing flows-some practical guidelines for emergency releases[J].Plant/Operations Progress,1985,4(3):132-134.
  • 10LI Zhi-yi(李志义),YU Jian-liang(喻健良).Rupture Disc Technique and Application (爆破片技术及应用)[M].Beijing(北京):Chemical Industry Press(化学工业出版社),2006.

共引文献18

同被引文献32

  • 1梁志宏,耿惠民.过氧化氢爆炸事故浅析[J].消防科学与技术,2004,23(6):602-604. 被引量:13
  • 2GB150—2011,钢制压力容器[s].
  • 3官青.双氧水槽车爆炸事故调查报告[J].化工技术与开发,2007,36(12):52-54. 被引量:9
  • 4Fisher H G.An overview of emergency relief system design practice[J].Plant/Operations Progress,1991,10(1):1-12.
  • 5Fauske H K.Emergency relief system design for reactive and non-reactive systems:Extension of the DIERS methodology[J].Plant/Operations Progress,1988,7(3):153-158.
  • 6Fauske H K.Revisiting DIERS two-phase methodology for reactive systems twenty years later[J].Process Safety Progress,2006,25(3):180-188.
  • 7Snee T J,Cusco* L,Hare J A,et al.Venting of a runaway organic peroxide decomposition in viscous solvents on pilot scale[J].Process Safety Progress,2006,25(3):227-236.
  • 8Dellavedova M,Gigante L,Lunghi A,et al.Safer management of process changes in chemical reactors[J].Journal of Loss Prevention in the Process Industries,2010,23(4):515-521.
  • 9Burelbach J P.Vent sizing applications for reactive systems[C].AIChE2001 Spring National Meeting 5th Bi-Annual Process Plant Safety Symposium,Pressure Relief Session,2001:342-352.
  • 10Singh J.Vent sizing for gas generating runaway reactions[J].Journal of Loss Prevention in the Process Industries,1994,7(6):481-491.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部