期刊文献+

基于TIGA_S4VM改进算法的蛋白质序列识别方法 被引量:2

Protein sequence identification based on improved TIGA_S4VM algorithm
原文传递
导出
摘要 针对安全的半监督支持向量机(safe semi-supervised support vector machine,S4VM)存在参数选择盲目性、正负样本比例不平衡等问题,建立了基于改进的TF-IDF(term frequency-inverse document frequency,TF-IDF)、遗传算法(genetic algorithm,GA)和S4VM的蛋白质序列识别方法 TIGA-S4VM。利用改进的TF-IDF算法提取出蛋白质序列中的特征项,将各个特征项在蛋白质序列中出现的频率归一化后作为识别模型的特征值,并结合GA以及S4VM对蛋白质序列进行识别。实验结果表明,TIGA-S4VM优于其它5个识别方法,即使在训练样本率较低时,也能有效地识别蛋白质序列。 In order to effectively deal with the choice blindness of parameters and unbalanced class sizes, TIGA-S4VM, a protein sequence identification model was developed and trained using safe semi-supervised support vector machine (S4VM) based on improved TF-IDF algorithm and Genetic Algorithm (GA).LBTF-IDF, the improved TF-IDF algo-rithm, was put forward in this model for extracting the protein sequences′features.After the normalization of features′frequencies, the results were taken as the characteristic values for classifier.Combining LBTF-IDF, GA and S4VM, the mixed strategy was used to identify the protein sequences.Experiment results showed that the method was superior to other five classification methods and could get good classification performance with reduced training set.
出处 《山东大学学报(工学版)》 CAS 北大核心 2014年第1期1-6,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61003093)
关键词 支持向量机 安全的半监督支持向量机 蛋白质序列识别 遗传算法 半监督算法 TF-IDF support vector machine S4VM protein sequence identification TF-IDF GA semi-supervised algorithm
  • 相关文献

参考文献22

  • 1GALáN J E,COLLMER A. Type III secretion machines:bacterial devices for protein delivery into host cells[J].SCIENCE,1999,(5418):1322-1328.
  • 2ALFANO J R,COLLMER A. Type III secretion system effector proteins:double agents in bacterial disease and plant defense[J].Annual Review of Phytopathology,2004.385-414.
  • 3DEAN P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection[J].FEMS Microbiology Reviews,2011,(06):1100-1125.
  • 4LEWIS J D,GUTTMAN D S,DESVEAUX D. The tar-geting of plant cellular systems by injected type III effecter proteins[J].Seminars in Cell &Developmental Biology,2009,(09):1055-1063.
  • 5ARNOLD R,BRANDMAIER S,KLEINE F. Se-quence-based prediction of type III secreted proteins[J].PLoS Pathogens,2009,(04):e1000376.
  • 6LO¨WER M,SCHNEIDER G. Prediction of type III secre-tion signals in genomes of gram-negative bacteria[J].PlOS ONE,2009,(06):e5917.
  • 7WANG Y,ZHANG Q,SUN M. High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles[J].BIOINFORMATICS,2011,(06):777-784.
  • 8JIN W,LI Z J,WEI L S. The improvements of BP neural network learning algorithm[A].Bei-jing:IEEE,2000.1647-1649.
  • 9SUYKENS J A K,VANDEWALLE J. Least squares sup-port vector machine classifiers[J].Neural Processing Let-ters,1999,(03):293-300.
  • 10顾亚祥,丁世飞.支持向量机研究进展[J].计算机科学,2011,38(2):14-17. 被引量:123

二级参考文献61

共引文献341

同被引文献24

  • 1胡国胜,钱玲,张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132. 被引量:33
  • 2李一博,靳世久,孙立瑛,宋志东,张元凯.超声导波管道检测中导波模态及频率的选择[J].天津大学学报,2006,39(B06):143-147. 被引量:20
  • 3ZHANG J,CHUNG H S,LO W L.Clustering-Based Adaptive Crossover and Mutation Probabilities for Genetic Algorithms[J].IEEE Transactions on Evolutionary Computation,2007,11(3):326-335.
  • 4OUERFELLI H,DAMMAK A.The Genetic Algorithm with two point crossover to solve the Resource-Constrained Project Scheduling Problems[C]//International Conference on Modeling,Simulation and Applied Optimization.Hammamet,Tunisia: IEEE,2013:1-4.
  • 5GAO Y,ZHENG T.Improved genetic algorithms based on chaotic mutation operation and its application[C]//International Conference on Multimedia Technology,Ningbo,China: IEEE,2010:1-3.
  • 6ABIDO M A,ELAZOUNI A.Improved Crossover and Mutation Operators for Genetic Algorithm Project Scheduling[C]//IEEE Congress on Evolutionary Computation.Trondheim,Norway: IEEE,2009:1865-1872.
  • 7RITTHIPAKDEE A,THAMMANO A,PREMASATHIAN N,et al.A New Selection Operator to Improve the Performance of Genetic Algorithm for Optimization Problems[C]//IEEE ICMA Conference International Scientific Advisory Board.Takamatsu,Japan:IEEE,2013:371-375.
  • 8ZHONG J H,HU X M,GU M,et al.Comparison of Performance between Different Selection Strategies on Simple Genetic Algorithms[C]//International Conference on Computational Intelligence for Modelling,Control and Automation,and International Conference on Intelligent Agents,Web Technologies and Internet Commerce.Vienna,Austria: IEEE,2005:1115-1121.
  • 9RAJAKUMAR B R,GEORGE A.A New Adaptive Muta-tion Technique for Genetic Algorithm[C]//IEEE Interna-tional Conference on Computational Intelligence and Computing Research.Coimbatore India: IEEE,2012:1-7.
  • 10龚月姣,陈梦君,胡晓敏,张军.遗传算法中自适应方法的比较和分析[J].计算机工程与设计,2009,30(21):4907-4913. 被引量:6

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部