期刊文献+

基于有序决策树的改进归纳算法

An improved induction algorithm based on ordinal decision tree
原文传递
导出
摘要 基于构建有序决策树,提出了一种新的归纳算法。该算法选择的扩展属性不仅和类的有序互信息值最大,而且要求和同一分支上已被用过的条件属性的有序互信息值最小。实验结果表明,考虑了条件属性之间的相关性后,可避免同一条件属性的重复选择,真正体现了条件属性和决策属性之间的有序互信息,与已有的算法相比,提高了测试精度。 An improved ordinal decision tree algorithm was proposed.The extended attributes selected with the pro-posed algorithm maximized the ranking mutual information between the candidate attributes and the decision attribute, and also minimized the ranking mutual information between the candidate attributes and the selected conditional attrib-utes on the same branch.The experimental results showed that the correlation to be taken account among the conditional attributes could avoid to selecte the same one, and the ideas of the proposed method could really reflect the nature of the ranking mutual information.The proposed algorithm could improve the test accuracy compared with the existing algo-rithms.
出处 《山东大学学报(工学版)》 CAS 北大核心 2014年第1期41-44,共4页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61170040) 河北省自然科学基金资助项目(F2013201110 F2013201220) 河北大学自然科学基金资助项目(2011-228043)
关键词 有序互信息 有序分类 有序信息熵 属性相关 决策树 ranking mutual information ordinal classification ranking entropy correlation of attribute decision tree
  • 相关文献

参考文献19

  • 1POTHARST R,FEELDERS A J. Classification trees for problems with mononicity constrains[J].ACM SIGKDD Exploration Newsletter,2002,(01):1-10.
  • 2JIMNEZ A,BERZAL F,CUBERO J C. POT miner:or-dered unordered and partially-ordered trees[J].Knowl-edge and Information Systems,2010,(05):199-224.
  • 3QUINLAN J R. Induction of decision trees[J].Machine Learning,1986,(01):81-106.
  • 4BREIMAN L. Classification and regression trees[J].Chapman and Hall,1993,(06):1-10.
  • 5KOTLOWSKI W,SLOWINSKI R. Rule learning with monotonicity constraints[J].Machine Learning,2009,(07):537-544.
  • 6CARDOSO J S,COSTA J F. Learning to classify ordinal data:the data replication method[J].Mach Learn Res,2007,(01):1393-1429.
  • 7XIA F,ZHANG W S,LI F X. Ranking with deci-sion tree[J].Know Info System,2008,(05):381-395.
  • 8BAETS B D. Growing decision trees in an ordinal setting[J].Intel System,2003,(05):733-750.
  • 9POTHARST R,BIOCH J C. Decision trees for ordinal classification[J].Intelligent Data Analysis,2000,(11):97-111.
  • 10QUINLAN Q. C4.5.programs for machine learning[M].Morgan Kaufmann Publishers Inc,1993.80-105.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部