期刊文献+

一类生物流体力学连续系统的分岔研究

Studies on the Bifurcation of a Class of Continuous Biofluiddynamical System
下载PDF
导出
摘要 连续动力系统的非线性动力学研究,由于其应用的广泛性与问题的复杂性,近年来越来越受到重视。本文对一类生物流体力学中的连续系统——动脉局部狭窄时血液流动的分岔特性进行了研究,采用有限差分方法,将由偏微分方程组描述的连续动力系统约化为由常微分方程组描述的高维离散动力系统。求得了离散动力系统的平衡解并分析其稳定性,同时讨论了流场中变量空间分布的变化情况。求得了离散动力系统的前三个Lyapunov指数,以此作为系统是否发生混沌的判别条件。 On account of its wide applications and complexities, the nonlinear studies on continuous dynamical systems have been attached more weight recently. In this paper, we take the bifurcation characteristic studies on a class of continuous biofluiddynamical system: blood flow through a stenotic artery. The continuous dynamical system governed by partial differential equations is reduced into a high dimensional discrete dynamical system governed by ordinary differential equations by use of finite difference method. The equilibrium solution of the discrete dynamical system is obtained , and the solution' s stability is discussed, and the spatial distribution of variables are discussed at the same time. The first, the second and the third Lyapunov exponents of the discrete dynamical system are obtained and used as a criterion for the system whether to be chaotic.
出处 《力学季刊》 CSCD 2000年第3期288-293,共6页 Chinese Quarterly of Mechanics
基金 国家自然科学基金
关键词 生物流体力学 连续动力系统 稳定性 分岔 biofluiddynamics continuous dynamical system stability bifurcation
  • 相关文献

参考文献4

  • 1庆增.圆柱绕流的非线性动力学[J].力学进展,1994,24(4):525-546. 被引量:17
  • 2Lee T S,Int J Num Meth Fluids,1996年,22卷,1169页
  • 3Shi Z D,Int J Num Meth Fluids,1994年,20卷,289页
  • 4酆庆增,力学进展,1994年,24卷,4期,525页

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部