期刊文献+

基于机器学习的轿车级别评定 被引量:1

Car level evaluation based on the machine learning
下载PDF
导出
摘要 建立有效的数学模型可以提高消费者判定轿车级别的准确率。首先,将数据集分为训练数据集和测试数据集,针对训练数据集分别采用支持向量机算法、随机森林算法、k-近邻算法以及朴素贝叶斯算法建立4种模型。其次,用测试数据集比较和分析模型的性能,详细分析了每个模型的优缺点,以准确率作为评价指标,并根据消费者的购买需求,选择相应的模型。 The accuracy for level of car is improved through the establishment of effective mathematical model.First,the da-ta is divided into training set and testing set.Moreover,based on support vector machine,random forests,k-nearest neigh-bor and naive Bayesian algorithms,four models are established in view of the training set,respectively.Next,comparing the performance of the models and analyzing the advantages and disadvantages of each model,the appropriate model is choose according to the accuracy rate and the consumer′s purchase requirement.
出处 《桂林电子科技大学学报》 2014年第1期30-32,共3页 Journal of Guilin University of Electronic Technology
基金 国家863计划(2012AA011005) 国家自然科学基金(11201094) 广西自然科学基金(2012jjGAG0001)
关键词 支持向量机 随机森林 K-近邻 朴素贝叶斯 support vector machines random forests k-nearest neighbor naive Bayesian
  • 相关文献

参考文献10

  • 1Sebastiani F. Machine learning in automated text calego- rization [J ]. Association for Computing Machinery, 2002,34(1) :1-47.
  • 2Dyken C,Floater M S. Transfinite mean value interpola- tion[J]. Computer Aided Geometric Design, 2009, 26 (1) : 117-134.
  • 3Arnosti N A,Kalita J K. Cutting plane training for linear support vector machines . IEEE Transactions on Knowledge and Data Engineering, 2013, 25 ( 5 ) : 1186-1190.
  • 4Volpi M,Tuia D,Bovolo F. Supervised change detection in VHR images using contextual information and sup- port vector machines . International Journal of Ap- plied Earth Observation and Geoinformation, 2013, 20 (2):77-85.
  • 5Karim M, Rahman R M. Decision tree and naive bayes algorithm for classification and generation of knowledge for direct marketing. Journal of Software Engineering and Applications,2013,6(4) : 196-206.
  • 6Genuer R,Poggi J M, Christine T M. Variable seleclion using random forests [J]. Pattern Recognition Leuers. 2010,31(14) :2225-2236.
  • 7Gislason P O, Benediktsson J A, Sreinsson J R. Random forests for land cover classification. Pattern Recogni tion Letters, 2006,27(4) : 294-300.
  • 8Liao Y H,Vemuri V R. Use of k nearest neighbor clas sifier for intrusion detection[J]. Computers & Security, 2002,21(5) :439-448.
  • 9Webb G I, Pazzni M J, Billsus D. Machine learning for user modeling. User Modeling and User-adapted In teraction, 2001,11 ( 1 ) : 19-29.
  • 10Bhise R B,Thorat S S, Supekar A K. Importance of data mining in higher education system[J]. IOSR Journal of Humanities and Social Science,2013,6(6) :18-21.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部